Exploiting Time-Malleability in Cloud-based Batch Processing Systems
暂无分享,去创建一个
[1] Antony I. T. Rowstron,et al. Bridging the tenant-provider gap in cloud services , 2012, SoCC '12.
[2] Herodotos Herodotou,et al. No one (cluster) size fits all: automatic cluster sizing for data-intensive analytics , 2011, SoCC.
[3] Hitesh Ballani,et al. Towards predictable datacenter networks , 2011, SIGCOMM 2011.
[4] Michael Abd-El-Malek,et al. Omega: flexible, scalable schedulers for large compute clusters , 2013, EuroSys '13.
[5] Randy H. Katz,et al. Improving MapReduce Performance in Heterogeneous Environments , 2008, OSDI.
[6] Ishai Menache,et al. Efficient Online Scheduling for Deadline-Sensitive Batch Computing , 2013 .
[7] Roy H. Campbell,et al. ARIA: automatic resource inference and allocation for mapreduce environments , 2011, ICAC '11.
[8] Albert G. Greenberg,et al. Reining in the Outliers in Map-Reduce Clusters using Mantri , 2010, OSDI.
[9] Ion Stoica,et al. True elasticity in multi-tenant data-intensive compute clusters , 2012, SoCC '12.
[10] Srikanth Kandula,et al. Reoptimizing Data Parallel Computing , 2012, NSDI.
[11] Pramod Bhatotia,et al. Orchestrating the Deployment of Computations in the Cloud with Conductor , 2012, NSDI.
[12] Srikanth Kandula,et al. Jockey: guaranteed job latency in data parallel clusters , 2012, EuroSys '12.
[13] Joseph Naor,et al. Efficient online scheduling for deadline-sensitive jobs: extended abstract , 2013, SPAA.