A Bialgebraic Review of Deterministic Automata, Regular Expressions and Languages

This papers reviews the classical theory of deterministic automata and regular languages from a categorical perspective. The basis is formed by Rutten’s description of the Brzozowski automaton structure in a coalgebraic framework. We enlarge the framework to a so-called bialgebraic one, by including algebras together with suitable distributive laws connecting the algebraic and coalgebraic structure of regular expressions and languages. This culminates in a reformulated proof via finality of Kozen’s completeness result. It yields a complete axiomatisation of observational equivalence (bisimilarity) on regular expressions. We suggest that this situation is paradigmatic for (theoretical) computer science as the study of “generated behaviour”.

[1]  Michael A. Arbib Fondations de la théorie de systèmes: Systèmes décomposablesGrundlagen der systemtheorie: Dekomponierbare systemeФopмиpoвaниe тeopии cиcтeм: дeкoмпoзaбeльнe cиcтeмы , 1974 .

[2]  John Power,et al.  Distributivity for endofunctors, pointed and co-pointed endofunctors, monads and comonads , 2000, CMCS.

[3]  Janusz A. Brzozowski,et al.  Derivatives of Regular Expressions , 1964, JACM.

[4]  Jan J. M. M. Rutten,et al.  Initial Algebra and Final Coalgebra Semantics for Concurrency , 1993, REX School/Symposium.

[5]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[6]  Bart Jacobs,et al.  Objects and Classes, Co-Algebraically , 1995, Object Orientation with Parallelism and Persistence.

[7]  Jan J. M. M. Rutten,et al.  Automata, Power Series, and Coinduction: Taking Input Derivatives Seriously , 1999, ICALP.

[8]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[9]  Dexter Kozen A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events , 1994, Inf. Comput..

[10]  Wan Fokkink,et al.  On the Completeness of the Euations for the Kleene Star in Bisimulation , 1995, AMAST.

[11]  Koushik Sen,et al.  Generating Optimal Monitors for Extended Regular Expressions , 2003, RV@CAV.

[12]  Tarmo Uustalu,et al.  Recursion Schemes from Comonads , 2001, Nord. J. Comput..

[13]  Michael A. Arbib,et al.  Algebraic Approaches to Program Semantics , 1986, Texts and Monographs in Computer Science.

[14]  Jan J. M. M. Rutten,et al.  Automata and Coinduction (An Exercise in Coalgebra) , 1998, CONCUR.

[15]  J. W. deBakker,et al.  Control flow semantics , 1996 .

[16]  Albert R. Meyer,et al.  Bisimulation can't be traced , 1988, POPL '88.

[17]  Jan J. M. M. Rutten,et al.  Behavioural differential equations: a coinductive calculus of streams, automata, and power series , 2003, Theor. Comput. Sci..

[18]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[19]  S. Lane Categories for the Working Mathematician , 1971 .

[20]  Gordon D. Plotkin,et al.  Towards a mathematical operational semantics , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[21]  Dexter Kozen,et al.  Myhill-Nerode Relations on Automatic Systems and the Completeness of Kleene Algebra , 2001, STACS.

[22]  D. Turi,et al.  Functional Operational Semantics and its Denotational Dual , 1996 .

[23]  Bart Jacobs,et al.  Structural Induction and Coinduction in a Fibrational Setting , 1998, Inf. Comput..

[24]  J. Goguen Minimal realization of machines in closed categories , 1972 .

[25]  P. T. Johnstone,et al.  Adjoint Lifting Theorems for Categories of Algebras , 1975 .

[26]  E. Muller David,et al.  Alternating automata on infinite trees , 1987 .

[27]  Bart Jacobs,et al.  Exercises in Coalgebraic Specification , 2000, Algebraic and Coalgebraic Methods in the Mathematics of Program Construction.

[28]  Joseph A. Goguen,et al.  Discrete-Time Machines in Closed Monoidal Categories. I , 1975, J. Comput. Syst. Sci..

[29]  Jan Friso Groote,et al.  Structured Operational Semantics and Bisimulation as a Congruence , 1992, Inf. Comput..

[30]  Robert de Simone,et al.  CONCUR'98 Concurrency Theory , 1998, Lecture Notes in Computer Science.

[31]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[32]  Roland Carl Backhouse,et al.  Algebraic and Coalgebraic Methods in the Mathematics of Program Construction , 2000, Lecture Notes in Computer Science.

[33]  F. Bartels On generalised coinduction and probabilistic specification formats : Distributive laws in coalgebraic modelling , 2004 .

[34]  David E. Muller,et al.  Alternating Automata on Infinite Trees , 1987, Theor. Comput. Sci..

[35]  Joseph A. Goguen,et al.  Realization is universal , 1972, Mathematical systems theory.

[36]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[37]  J. Conway Regular algebra and finite machines , 1971 .

[38]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[39]  Michael A. Arbib,et al.  Foundations of system theory: Decomposable systems , 1974, Autom..

[40]  F. Bartels,et al.  On Generalised Coinduction and Probabilistic Specification Formats , 2004 .

[41]  Horst Reichel,et al.  An approach to object semantics based on terminal co-algebras , 1995, Mathematical Structures in Computer Science.

[42]  Hans-Jörg Schek,et al.  Object Orientation with Parallelism and Persistence , 1996 .

[43]  Bart Jacobs,et al.  Distributive laws for the coinductive solution of recursive equations , 2006, Inf. Comput..

[44]  Marco Kick,et al.  Bialgebraic Modelling of Timed Processes , 2002, ICALP.