A note on POD model reduction methods for DAEs

We review some known results for proper orthogonal decomposition (POD) model order reduction applied to ordinary differential equations (ODEs). Then, these results are generalized for several types of differential-algebraic equations (DAEs). We provide algorithms for the model reduction and error bounds for the reduced-order models. Some limits of the approach are pointed out and alternative methods for reduced-order subspace approximation are presented. The POD approach is tested and evaluated for a medium-sized DAE example from multi-body dynamics.

[1]  S. Campbell Linearization of DAEs along trajectories , 1995 .

[2]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems (Advances in Design and Control) (Advances in Design and Control) , 2005 .

[3]  S. Hammarling Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .

[4]  Stephen L. Campbell,et al.  Solvability of General Differential Algebraic Equations , 1995, SIAM J. Sci. Comput..

[5]  Linda R. Petzold,et al.  Differential-algebraic equations , 2008, Scholarpedia.

[6]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[7]  L. Mirsky SYMMETRIC GAUGE FUNCTIONS AND UNITARILY INVARIANT NORMS , 1960 .

[8]  G. Dahlquist Stability and error bounds in the numerical integration of ordinary differential equations , 1961 .

[9]  R. Bellman,et al.  Differential- and Integral-Ungleichungen , 1964 .

[10]  Tatjana Stykel,et al.  Numerical solution and perturbation theory for generalized Lyapunov equations , 2002 .

[11]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[12]  H. Tran,et al.  Modeling and control of physical processes using proper orthogonal decomposition , 2001 .

[13]  Gene H. Golub,et al.  Matrix computations , 1983 .

[14]  W. Rheinboldt,et al.  A general existence and uniqueness theory for implicit differential-algebraic equations , 1991, Differential and Integral Equations.

[15]  W. J. Langford Statistical Methods , 1959, Nature.

[16]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[17]  E. Griepentrog,et al.  Differential-algebraic equations and their numerical treatment , 1986 .

[18]  N. Risebro,et al.  An operator splitting method for nonlinear convection-diffusion equations , 1997 .

[19]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[20]  C. W. Gear,et al.  The index of general nonlinear DAEs , 1995 .

[21]  M. A. Akanbi,et al.  Numerical solution of initial value problems in differential - algebraic equations , 2005 .

[22]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[23]  Linda R. Petzold,et al.  Error Estimation for Reduced Order Models of Dynamical systems , 2003 .

[24]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[25]  Simone Bächle,et al.  Index reduction for differential-algebraic equations in circuit simulation , 2004 .

[26]  Stefan Volkwein,et al.  Error estimates for abstract linear–quadratic optimal control problems using proper orthogonal decomposition , 2008, Comput. Optim. Appl..

[27]  Tatjana Stykel,et al.  Stability and inertia theorems for generalized Lyapunov equations , 2002 .

[28]  L. Petzold Differential/Algebraic Equations are not ODE's , 1982 .

[29]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[30]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[31]  Jerrold E. Marsden,et al.  Empirical model reduction of controlled nonlinear systems , 1999, IFAC Proceedings Volumes.

[32]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[33]  Thilo Penzl,et al.  Numerical solution of generalized Lyapunov equations , 1998, Adv. Comput. Math..

[34]  Muruhan Rathinam,et al.  Dynamic Iteration Using Reduced Order Models: A Method for Simulation of Large Scale Modular Systems , 2002, SIAM J. Numer. Anal..

[35]  Simone Bächle,et al.  Index Reduction by Element-Replacement for Electrical Circuits , 2007 .

[36]  Volker Mehrmann,et al.  Stability properties of differential-algebraic equations and Spin-stabilized discretizations. , 2007 .

[37]  W. Rheinboldt On the computation of multi-dimensional solution manifolds of parametrized equations , 1988 .

[38]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[39]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[40]  Stefan Volkwein,et al.  POD a-posteriori error estimates for linear-quadratic optimal control problems , 2009, Comput. Optim. Appl..

[41]  S. Ravindran A reduced-order approach for optimal control of fluids using proper orthogonal decomposition , 2000 .

[42]  Andreas Steinbrecher,et al.  Numerical Solution of Quasi-Linear Differential-Algebraic Equations and Industrial Simulation of Multibody Systems , 2006 .

[43]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[44]  L. Sirovich Turbulence and the dynamics of coherent structures. III. Dynamics and scaling , 1987 .

[45]  Tatjana Stykel,et al.  Gramian-Based Model Reduction for Descriptor Systems , 2004, Math. Control. Signals Syst..

[46]  J. Marsden,et al.  A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .