National Ignition Campaign Hohlraum energeticsa)

The first series of experiments of the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] tested ignition Hohlraum “energetics,” a term described by four broad goals: (1) measurement of laser absorption by the Hohlraum; (2) measurement of the x-ray radiation flux (TRAD4) on the surrogate ignition capsule; (3) quantitative understanding of the laser absorption and resultant x-ray flux; and (4) determining whether initial Hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF Hohlraum energetics experiments. The Hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (<10%) for Hohlraums filled with helium gas. A discussion of our current understanding of NIF Hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes that have been used to design the Hohlraums. The perf...

[1]  J D Lindl,et al.  Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. , 2009, Physical review letters.

[2]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[3]  O. Jones,et al.  Design and simulations of indirect drive ignition targets for NIF , 2004 .

[4]  J. D. Moody,et al.  Design of the National Ignition Facility static x-ray imager , 2001 .

[5]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[6]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[7]  L. Divol,et al.  Observation of the density threshold behavior for the onset of stimulated Raman scattering in high-temperature hohlraum plasmas. , 2009, Physical review letters.

[8]  Richard A. London,et al.  Energetics of multiple-ion species hohlraum plasmasa) , 2007 .

[9]  P. Michel,et al.  Three-dimensional modeling of laser-plasma interaction: Benchmarking our predictive modeling tools versus experimentsa) , 2008 .

[10]  Jay D. Salmonson,et al.  Rev3 Update of Requirements for NIF Ignition Targets , 2009 .

[11]  L J Suter,et al.  Direct measurements of an increased threshold for stimulated brillouin scattering with polarization smoothing in ignition hohlraum plasmas. , 2008, Physical review letters.

[12]  R. E. Bahr,et al.  A pulsed-laser calibration system for the laser backscatter diagnostics at the Omega laser. , 2008, The Review of scientific instruments.

[13]  W. Grasberger,et al.  XSNQ-U: a non-LTE emission and absorption coefficient subroutine , 1977 .

[14]  Robert L. Kauffman,et al.  Dante soft x-ray power diagnostic for National Ignition Facility , 2004 .

[15]  O. Landen,et al.  First hohlraum drive studies on the National Ignition Facilitya) , 2006 .

[16]  James F. Drake,et al.  Parametric Instabilities of Electromagnetic Waves in Plasmas , 1974 .

[17]  M. J. Edwards,et al.  Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies , 2009, Science.

[18]  D. K. Bradley,et al.  Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facilitya) , 2009 .

[19]  E. L. Lindman,et al.  Plasma simulation studies of stimulated scattering processes in laser‐irradiated plasmas , 1975 .

[20]  T. C. Sangster,et al.  The effect of condensates and inner coatings on the performance of vacuum hohlraum targets , 2010 .

[21]  G. Zimmerman,et al.  A new quotidian equation of state (QEOS) for hot dense matter , 1988 .

[22]  S. Sutton,et al.  National Ignition Facility laser performance status. , 2007, Applied optics.

[23]  S. Rose,et al.  Calculation of the time-dependent excitation and ionization in a laser-produced plasma , 1992 .

[24]  F. D. Lee,et al.  Hard x-ray and hot electron environment in vacuum hohlraums at the National Ignition Facility , 2006 .

[25]  Brian Spears,et al.  Influence and measurement of mass ablation in ICF implosions , 2007 .

[26]  Richard L. Berger,et al.  Optimization of the NIF ignition point design hohlraum , 2007 .

[27]  Edward I. Moses,et al.  The National Ignition Facility: Ushering in a new age for high energy density science , 2009 .

[28]  L. Divol,et al.  Suppression of stimulated brillouin scattering by increased landau damping in multiple-ion-species hohlraum plasmas. , 2008, Physical review letters.

[29]  Arthur Nobile,et al.  Status of the development of ignition capsules in the U.S. effort to achieve thermonuclear ignition on the national ignition facility , 2006 .