Utilising Assured Multi-Agent Reinforcement Learning within Safety-Critical Scenarios

[1]  Bart De Schutter,et al.  Multi-agent Reinforcement Learning: An Overview , 2010 .

[2]  Norman Carver,et al.  Tuning computer gaming agents using Q-learning , 2011, 2011 Federated Conference on Computer Science and Information Systems (FedCSIS).

[3]  Nasser Mozayani,et al.  Enhancing Nash Q-learning and Team Q-learning mechanisms by using bottlenecks , 2014, J. Intell. Fuzzy Syst..

[4]  Yang Gao,et al.  Multiagent Reinforcement Learning With Unshared Value Functions , 2015, IEEE Transactions on Cybernetics.

[5]  Maria Potop-Butucaru,et al.  Multi-agent patrolling in dynamic environments , 2017, 2017 IEEE International Conference on Agents (ICA).

[6]  Sebastian Junges,et al.  A Storm is Coming: A Modern Probabilistic Model Checker , 2017, CAV.

[7]  Radu Calinescu,et al.  Assured Reinforcement Learning with Formally Verified Abstract Policies , 2017, ICAART.

[8]  Frank Ciesinski,et al.  On Probabilistic Computation Tree Logic , 2004, Validation of Stochastic Systems.

[9]  Javier García,et al.  A comprehensive survey on safe reinforcement learning , 2015, J. Mach. Learn. Res..

[10]  Elias Stipidis,et al.  Mission-Critical Systems Design Framework , 2018 .

[11]  Elena Troubitsyna,et al.  Formal Development and Quantitative Assessment of a Resilient Multi-robotic System , 2013, SERENE.

[12]  Rachid Guerraoui,et al.  Dynamic Safe Interruptibility for Decentralized Multi-Agent Reinforcement Learning , 2017, NIPS.

[13]  Sebastian Junges,et al.  Shielded Decision-Making in MDPs , 2018, ArXiv.

[14]  Robert Bogue,et al.  Robots in the nuclear industry: a review of technologies and applications , 2011, Ind. Robot.

[15]  Michael Luck,et al.  Quantitative analysis of multi-agent systems through statistical verification of simulation traces , 2018, Int. J. Agent Oriented Softw. Eng..

[16]  Thomas J. Walsh,et al.  Towards a Unified Theory of State Abstraction for MDPs , 2006, AI&M.

[17]  Zhou Fang,et al.  Four-Dimensional Trajectory Generation for UAVs Based on Multi-Agent Q Learning , 2020, Journal of Navigation.

[18]  Nasser Mozayani,et al.  Automatic abstraction controller in reinforcement learning agent via automata , 2014, Appl. Soft Comput..

[19]  Vijay Kumar,et al.  A Multi-robot Control Policy for Information Gathering in the Presence of Unknown Hazards , 2011, ISRR.

[20]  Amnon Shashua,et al.  Safe, Multi-Agent, Reinforcement Learning for Autonomous Driving , 2016, ArXiv.

[21]  Jan Wieghardt,et al.  SAT-MARL: Specification Aware Training in Multi-Agent Reinforcement Learning , 2020, ICAART.

[22]  Guillaume J. Laurent,et al.  Independent reinforcement learners in cooperative Markov games: a survey regarding coordination problems , 2012, The Knowledge Engineering Review.

[23]  Tamer Başar,et al.  Decentralized Policy Gradient Descent Ascent for Safe Multi-Agent Reinforcement Learning , 2021, AAAI.

[24]  Radu Calinescu,et al.  Assurance in Reinforcement Learning Using Quantitative Verification , 2018 .

[25]  David Portugal,et al.  A ROS-Based Framework for Simulation and Benchmarking of Multi-robot Patrolling Algorithms , 2018, Studies in Computational Intelligence.

[26]  Arnulfo Alanis,et al.  Towards a Multi-Agent System for an Informative Healthcare Mobile Application , 2018, KES-AMSTA.

[27]  Salil S. Kanhere,et al.  Multi-Agent Systems: A Survey , 2018, IEEE Access.

[28]  Sebastian Junges,et al.  Model Checking for Safe Navigation Among Humans , 2018, QEST.

[29]  Alberto Camacho,et al.  LTL and Beyond: Formal Languages for Reward Function Specification in Reinforcement Learning , 2019, IJCAI.

[30]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[31]  Baran Çürüklü,et al.  Adaptive Autonomy in a Search and Rescue Scenario , 2018, 2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems (SASO).

[32]  Radu Calinescu,et al.  Reinforcement Learning with Quantitative Verification for Assured Multi-Agent Policies , 2021, ICAART.