Coupling superconducting qubits via a cavity bus

[1]  Seth Lloyd,et al.  Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.

[2]  S. Lloyd,et al.  Quantum Coherent Tunable Coupling of Superconducting Qubits , 2007, Science.

[3]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[4]  L Frunzio,et al.  Generating single microwave photons in a circuit. , 2007, Nature.

[5]  H. Kimble,et al.  Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks , 2007, Science.

[6]  S. Girvin,et al.  Quantum information processing with circuit quantum electrodynamics , 2006, cond-mat/0612038.

[7]  S. Girvin,et al.  Resolving photon number states in a superconducting circuit , 2006, Nature.

[8]  H. Meyer,et al.  Controllable coupling of superconducting flux qubits. , 2006, Physical review letters.

[9]  John Clarke,et al.  Solid-State Qubits with Current-Controlled Coupling , 2006, Science.

[10]  M. Steffen,et al.  Measurement of the Entanglement of Two Superconducting Qubits via State Tomography , 2006, Science.

[11]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[12]  S. Girvin,et al.  Approaching unit visibility for control of a superconducting qubit with dispersive readout. , 2005, Physical review letters.

[13]  S. Girvin,et al.  ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2004, Physical review letters.

[14]  C. Harmans,et al.  Spectroscopy on two coupled superconducting flux qubits. , 2003, Physical review letters.

[15]  John M. Martinis,et al.  Implementing Qubits with Superconducting Integrated Circuits , 2004, Quantum Inf. Process..

[16]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[17]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[18]  O. Astafiev,et al.  Demonstration of conditional gate operation using superconducting charge qubits , 2003, Nature.

[19]  Roberto Ramos,et al.  Entangled Macroscopic Quantum States in Two Superconducting Qubits , 2003, Science.

[20]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[21]  A. Doherty,et al.  Cavity Quantum Electrodynamics: Coherence in Context , 2002, Science.

[22]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[23]  P. Bertet,et al.  Coherent control of an atomic collision in a cavity. , 2001, Physical review letters.

[24]  G. Guo,et al.  Efficient scheme for two-atom entanglement and quantum information processing in cavity QED , 2000, Physical review letters.

[25]  D. Wineland,et al.  Complementarity and Young's interference fringes from two atoms , 1997, quant-ph/9711041.

[26]  J. Raimond,et al.  Generation of Einstein-Podolsky-Rosen Pairs of Atoms , 1997 .

[27]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[28]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[29]  Grangier,et al.  Quantum interference effect for two atoms radiating a single photon. , 1985, Physical review letters.

[30]  M. Gell-Mann,et al.  Physics Today. , 1966, Applied optics.

[31]  October I Physical Review Letters , 2022 .