Evaluation of partial 12S rRNA, 16S rRNA, COI and Cytb gene sequence datasets for potential single DNA barcode for hylids (Anura: Hylidae).

We evaluated the extent of intraspecific and interspecific genetic distances and the effectiveness of predefined threshold values using the main genes for estimates of biodiversity and specimens' identification in anurans. Partial sequences of the mitochondrial genes for small (12S) and large (16S) ribosomal subunits, cytochrome c oxidase subunit I (COI) and Cytochrome b (Cytb) of the family Hylidae were downloaded from GenBank and curated for length, coverage, and potential contaminations. We performed analyses for all sequences of each gene and the same species present in these datasets by distance and tree (monophyly)-based evaluations. We also evaluated the ability to identify specimens using these datasets applying "nearest neighbor" (NN), "best close match" (BCM) and "BOLD ID" tests. Genetic distance thresholds were generated by the function 'threshVal' and "localMinima" from SPIDER package and traditional threshold values (1%, 3%, 6% and 10%) were also evaluated. Coding genes, especially COI, had a better identification capacity than non-coding genes on barcoding gap and monophyly analysis and NN, BCM, BOLD ID tests. Considering the multiple factors involved in global DNA barcoding evaluations, we present a critical assessment of the use of these genes for biodiversity estimation and specimens' identification in anurans (e.g. hylids).

[1]  D. Santana,et al.  DNA barcoding for identification of anuran species in the central region of South America , 2020, PeerJ.

[2]  F. Paiva,et al.  Revising the taxonomy of Proceratophrys Miranda‐Ribeiro, 1920 (Anura: Odontophrynidae) from the Brazilian semiarid Caatinga: Morphology, calls and molecules support a single widespread species , 2020 .

[3]  Mac P. Pierce Filling in the Gaps: Adopting Ultraconserved Elements Alongside COI to Strengthen Metabarcoding Studies , 2019, Front. Ecol. Evol..

[4]  D. Santana,et al.  A New Species of Pseudopaludicola Miranda-Ribeiro, 1926 (Anura: Leptodactylidae: Leiuperinae) from an Amazonia-Cerrado Transitional Zone, State of Tocantins, Brazil , 2019, Journal of Herpetology.

[5]  Jianping Jiang,et al.  Phylogeographic investigation on the spiny frog Quasipaa shini (Amphibia: Anura: Dicroglossidae) using mitochondrial DNA: cryptic species and species complex , 2019, Mitochondrial DNA Part B.

[6]  Douglas W. Yu,et al.  Why the COI barcode should be the community DNA metabarcode for the metazoa , 2018, Molecular ecology.

[7]  D. Santana,et al.  A New Species of Proceratophrys (Amphibia: Anura: Odontophrynidae) from the Araripe Plateau, Ceará State, Northeastern Brazil , 2018, Herpetologica.

[8]  M. Jansen,et al.  Accuracy, limitations and cost-efficiency of eDNA-based community survey in tropical frogs , 2017, bioRxiv.

[9]  H. Lumbsch,et al.  Evaluation of six regions for their potential as DNA barcodes in epiphyllous liverworts from Thailand , 2018, Applications in plant sciences.

[10]  S. Kvist,et al.  Estimating the barcoding gap in a global dataset of cox1 sequences for Odonata: close, but no cigar , 2018, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis.

[11]  M. Raupach,et al.  A DNA barcode library for ground beetles of Germany: the genus Amara Bonelli, 1810 (Insecta, Coleoptera, Carabidae) , 2018, ZooKeys.

[12]  R. Koroiva,et al.  DNA Barcodes for Forensically Important Fly Species in Brazil , 2018, Journal of Medical Entomology.

[13]  C. Haddad,et al.  eDNA metabarcoding: a promising method for anuran surveys in highly diverse tropical forests , 2017, Molecular ecology resources.

[14]  C. Haddad,et al.  Meeting the challenge of DNA barcoding Neotropical amphibians: polymerase chain reaction optimization and new COI primers , 2017, Molecular ecology resources.

[15]  R. Murphy,et al.  A new species of the genus Rana from Henan, central China (Anura, Ranidae) , 2017, ZooKeys.

[16]  S. Kvist,et al.  DNA barcoding of odonates from the Upper Plata basin: Database creation and genetic diversity estimation , 2017, PloS one.

[17]  E. Lehr,et al.  Three new species of Pristimantis (Amphibia, Anura, Craugastoridae) from upper montane forests and high Andean grasslands of the Pui Pui Protected Forest in central Peru , 2017 .

[18]  M. Rodrigues,et al.  Integrative taxonomy supports the existence of two distinct species within Hypsiboas crepitans (Anura: Hylidae) , 2017 .

[19]  M. Miya,et al.  Structure and variation of the mitochondrial genome of fishes , 2016, BMC Genomics.

[20]  J. Merilä,et al.  A New Species of Frog (Anura: Dicroglossidae) Discovered from the Mega City of Dhaka , 2016, PloS one.

[21]  D. Steinke,et al.  The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions , 2015, PloS one.

[22]  S. Ron,et al.  Systematics of treefrogs of the Hypsiboas calcaratus and Hypsiboas fasciatus species complex (Anura, Hylidae) with the description of four new species , 2014, ZooKeys.

[23]  D. G. Chapple,et al.  A Retrospective Approach to Testing the DNA Barcoding Method , 2013, PloS one.

[24]  M. Kwak,et al.  DNA barcode reference data for the Korean herpetofauna and their applications , 2013, Molecular ecology resources.

[25]  M. Vences,et al.  Cold Code: the global initiative to DNA barcode amphibians and nonavian reptiles , 2013 .

[26]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[27]  L. Boykin,et al.  Barcoding's next top model: an evaluation of nucleotide substitution models for specimen identification , 2012 .

[28]  S. Boyer,et al.  Spider: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding , 2012, Molecular ecology resources.

[29]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[30]  Rudolf Meier,et al.  On the inappropriate use of Kimura‐2‐parameter (K2P) divergences in the DNA‐barcoding literature , 2012, Cladistics : the international journal of the Willi Hennig Society.

[31]  Michael Balke,et al.  The Effect of Geographical Scale of Sampling on DNA Barcoding , 2012, Systematic biology.

[32]  R. Murphy,et al.  Universal COI primers for DNA barcoding amphibians , 2012, Molecular ecology resources.

[33]  A. J. Crawford,et al.  Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama , 2010, Proceedings of the National Academy of Sciences.

[34]  M. Vences,et al.  Vast underestimation of Madagascar's biodiversity evidenced by an integrative amphibian inventory , 2009, Proceedings of the National Academy of Sciences.

[35]  Bryan C. Carstens,et al.  Delimiting species without monophyletic gene trees. , 2007, Systematic biology.

[36]  N. Gemmell,et al.  Underestimation of Species Richness in Neotropical Frogs Revealed by mtDNA Analyses , 2007, PloS one.

[37]  D. Cannatella,et al.  Phylogeny and biogeography of paradoxical frogs (Anura, Hylidae, Pseudae) inferred from 12S and 16S mitochondrial DNA. , 2007, Molecular phylogenetics and evolution.

[38]  R. Summerbell,et al.  ITS barcodes for Trichophyton tonsurans and T. equinum. , 2007, Medical mycology.

[39]  William John Waugh,et al.  DNA barcoding in animal species: progress, potential and pitfalls. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[40]  Gaurav Vaidya,et al.  DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. , 2006, Systematic biology.

[41]  E. Recuero,et al.  Phylogeography of Pseudacris regilla (Anura: Hylidae) in western North America, with a proposal for a new taxonomic rearrangement. , 2006, Molecular phylogenetics and evolution.

[42]  Y. Kartavtsev,et al.  Analysis of nucleotide diversity at the cytochrome b and cytochrome oxidase 1 genes at the population, species, and genus levels , 2006, Russian Journal of Genetics.

[43]  C. Meyer,et al.  DNA Barcoding: Error Rates Based on Comprehensive Sampling , 2005, PLoS biology.

[44]  M. Vences,et al.  Deciphering amphibian diversity through DNA barcoding: chances and challenges , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[45]  M. Higgie,et al.  Reinforcement drives rapid allopatric speciation , 2005, Nature.

[46]  Arie van der Meijden,et al.  Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians , 2005, Frontiers in Zoology.

[47]  B. Young,et al.  Status and Trends of Amphibian Declines and Extinctions Worldwide , 2004, Science.

[48]  Jeremy R. deWaard,et al.  Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[49]  R. Baker,et al.  A TEST OF THE GENETIC SPECIES CONCEPT: CYTOCHROME-b SEQUENCES AND MAMMALS , 2001 .

[50]  F. Frati,et al.  Large amounts of genetic divergence among Italian species of the genus Orchesella (Insecta, collembola) and the relationships of two new species. , 2000, Molecular phylogenetics and evolution.

[51]  A. Goebel,et al.  PCR primers and amplification methods for 12S ribosomal DNA, the control region, cytochrome oxidase I, and cytochrome b in bufonids and other frogs, and an overview of PCR primers which have amplified DNA in amphibians successfully. , 1999, Molecular phylogenetics and evolution.

[52]  O. Takenaka,et al.  Phylogenetic Relationships of Brown Frogs with 24 Chromosomes from Far East Russia and Hokkaido Assessed by Mitochondrial Cytochrome b Gene Sequences (Rana: Ranidae) , 1998 .

[53]  M. Vences,et al.  DNA barcoding amphibians and reptiles. , 2012, Methods in molecular biology.

[54]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .