Biogeochemical weathering of soil apatite grains in the McMurdo Dry Valleys, Antarctica

[1]  A. Spickard,et al.  Landscape-scale soil phosphorus variability in the McMurdo Dry Valleys , 2017, Antarctic Science.

[2]  S. Porder,et al.  Parent Material and Topography Determine Soil Phosphorus Status in the Luquillo Mountains of Puerto Rico , 2013, Ecosystems.

[3]  S. Porder,et al.  Parent Material and Topography Determine Soil Phosphorus Status in the Luquillo Mountains of Puerto Rico , 2012, Ecosystems.

[4]  J. Levy How big are the McMurdo Dry Valleys? Estimating ice-free area using Landsat image data , 2012, Antarctic Science.

[5]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[6]  Sergey V. Dorozhkin,et al.  Dissolution mechanism of calcium apatites in acids: A review of literature. , 2012, World journal of methodology.

[7]  Xiaojuan Yang,et al.  Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method , 2011 .

[8]  J. Priscu,et al.  Spatial variations in the geochemistry of glacial meltwater streams in the Taylor Valley, Antarctica , 2010, Antarctic Science.

[9]  Andrew J. Monaghan,et al.  Snow in the McMurdo Dry Valleys, Antarctica , 2010 .

[10]  Ian R. McDonald,et al.  On the rocks: the microbiology of Antarctic Dry Valley soils , 2010, Nature Reviews Microbiology.

[11]  K. Föllmi,et al.  Weathering and the mobility of phosphorus in the catchments and forefields of the Rhône and Oberaar glaciers, central Switzerland: Implications for the global phosphorus cycle on glacial–interglacial timescales , 2009 .

[12]  E. Saiz,et al.  Defect induced asymmetric pit formation on hydroxyapatite. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[13]  J. Barrett,et al.  Soil phosphorus cycling in an Antarctic polar desert , 2008 .

[14]  E. Oelkers,et al.  The dissolution kinetics and apparent solubility of natural apatite in closed reactors at temperatures from 5 to 50 °C and pH from 1 to 6 , 2007 .

[15]  S. Dorozhkin Chemical etching of natural fluorapatite crystals in acid solutions studied with the scanning electr , 2006 .

[16]  D. Wall,et al.  Phosphorus fractions in soils of Taylor Valley, Antarctica , 2006 .

[17]  A. Gorbushina,et al.  The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass , 2005 .

[18]  D. Wall,et al.  VARIATION IN BIOGEOCHEMISTRY AND SOIL BIODIVERSITY ACROSS SPATIAL SCALES IN A POLAR DESERT ECOSYSTEM , 2004 .

[19]  Christopher P. McKay,et al.  Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000 , 2002 .

[20]  J. Banfield,et al.  Effect of Microorganisms and Microbial Metabolites on Apatite Dissolution , 2002 .

[21]  J. Fulghum,et al.  Direct observations of aluminosilicate weathering in the hyporheic zone of an Antarctic Dry Valley stream , 2002 .

[22]  D. Wall,et al.  Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration , 2001 .

[23]  J. Banfield,et al.  Microbial controls on phosphate and lanthanide distributions during granite weathering and soil formation , 2000 .

[24]  G. Denton,et al.  Geochronology of bonney drift, taylor valley, antarctica: evidence for interglacial expansions of taylor glacier , 2000 .

[25]  G. Denton,et al.  Evidence from taylor valley for a grounded ice sheet in the ross sea, antarctica , 2000 .

[26]  G. Denton,et al.  Glacial geomorphology of bonney drift, taylor valley, antarctica , 2000 .

[27]  Diana H. Wall,et al.  Physical Controls on the Taylor Valley Ecosystem, Antarctica , 1999 .

[28]  C. Souch,et al.  Effects of climate and landscape development on the terrestrial phosphorus cycle , 1999 .

[29]  Ross A. Virginia,et al.  LOW‐DIVERSITY ANTARCTIC SOIL NEMATODE COMMUNITIES: DISTRIBUTION AND RESPONSE TO DISTURBANCE , 1997 .

[30]  W. Mahaney,et al.  Microtextures on quartz grains in tills from Antarctica , 1996 .

[31]  J. Priscu Phytoplankton nutrient deficiency in lakes of the McMurdo dry valleys, Antarctica , 1995 .

[32]  G. R. Holdren,et al.  Mechanism of feldspar weathering—II. Observations of feldspars from soils , 1979 .

[33]  I. B. Campbell,et al.  THE SALTS IN ANTARCTIC SOILS, THEIR DISTRIBUTION AND RELATIONSHIP TO SOIL PROCESSES , 1977 .

[34]  D. Akob,et al.  Microbially mediated barite dissolution in anoxic brines , 2017 .

[35]  Yinian Zhu,et al.  Dissolution and solubility of hydroxylapatite and fluorapatite at 25˚C at different pH , 2013 .

[36]  S. Porder,et al.  Linking chronosequences with the rest of the world: predicting soil phosphorus content in denuding landscapes , 2011 .

[37]  A. Avdeef,et al.  Dissolution and Solubility , 2007 .

[38]  W. Schlesinger,et al.  Biological and geochemical controls on phosphorus fractions in semiarid soils , 2001 .

[39]  W. Schlesinger,et al.  Biological and geochemical controls on phosphorus , 2001 .

[40]  W. Schlesinger,et al.  A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems , 1995 .

[41]  J. Syers,et al.  The fate of phosphorus during pedogenesis , 1976 .