Microlocal analysis of GTD-based SAR models

We show how to apply the techniques of microlocal analysis to the Potter-Moses attributed scattering center model, which is based on the Geometrical Theory of Diffraction (GTD). The microlocal methods enable us to determine how scattering centers will appear in the radar data. We show also how to extend the model to some multiple-scattering events, and we apply the microlocal techniques to the extended model.

[1]  M. Cheney,et al.  Synthetic aperture inversion , 2002 .

[2]  Maarten V. de Hoop,et al.  Microlocal analysis of seismic inverse scattering in anisotropic elastic media , 2002 .

[3]  Lee C. Potter,et al.  Attributed scattering centers for SAR ATR , 1997, IEEE Trans. Image Process..

[4]  L. Hörmander Fourier integral operators. I , 1995 .

[5]  Alexander Katsevich,et al.  Local Tomography for the Generalized Radon Transform , 1997, SIAM J. Appl. Math..

[6]  Margaret Cheney,et al.  Microlocal structure of inverse synthetic aperture radar data , 2003 .

[7]  Eric Todd Quinto,et al.  Singularities of the X-ray transform and limited data tomography , 1993 .

[8]  Alain Grigis,et al.  Microlocal Analysis for Differential Operators: An Introduction , 1994 .

[9]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[10]  R. Sullivan Microwave Radar Imaging And Advanced Concepts , 2000 .

[11]  B. Borden Mathematical problems in radar inverse scattering , 2002 .

[12]  P. Waterman Matrix formulation of electromagnetic scattering , 1965 .

[13]  D. Mensa High resolution radar imaging , 1981 .

[14]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[15]  Margaret Cheney Synthetic-aperture assessment of a dispersive surface , 2004, Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509).

[16]  Margaret Cheney,et al.  Synthetic aperture inversion for arbitrary flight paths and nonflat topography , 2003, IEEE Trans. Image Process..

[17]  Bent E. Petersen Introduction to the Fourier transform & pseudo-differential operators , 1983 .

[18]  Margaret Cheney,et al.  Microlocal high-range-resolution ISAR for low signal-to-noise environments , 2003, SPIE Defense + Commercial Sensing.

[19]  Erik L. Ritman,et al.  Local Tomography II , 1997, SIAM J. Appl. Math..

[20]  Gregory Beylkin,et al.  Linearized inverse scattering problems in acoustics and elasticity , 1990 .

[21]  J. Kong,et al.  Theory of microwave remote sensing , 1985 .

[22]  Peter Stoyle Radar imaging of airborne targets: A Primer for Applied Mathematics and Physicists . B. Borden. Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK. 1999. 149pp. Illustrated. £50. ISBN 0-75030617-3. , 2000 .

[23]  François Treves,et al.  Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .

[24]  M. Czubak,et al.  PSEUDODIFFERENTIAL OPERATORS , 2020, Introduction to Partial Differential Equations.

[25]  V. K. Varadan,et al.  Acoustic, electromagnetic, and elastic wave scattering--focus on the T-matrix approach : international symposium held at the Ohio State University, Columbus, Ohio, USA, June 25-27, 1979 , 1980 .

[26]  E. T. Quinto,et al.  Local Tomographic Methods in Sonar , 2000 .