Simulations of surface roughness effects in planar superlenses

The impact of interfacial surface roughness upon imaging characteristics in planar superlenses has been investigated using finite element method (FEM) modelling. Simulations have been performed across the surface roughness range of 0.1?1.5?nm root mean square (RMS) for single-?and dual-layer superlenses. For single-layer superlenses the influence of asymmetric surface roughness profiles has also been investigated. Modelling results suggest a positive linear relationship between surface roughness, on the lens interfaces, and line edge roughness in the resulting image. Dual-layer superlenses are observed to be more sensitive to the magnitude of interfacial surface roughness than single-layer superlenses. Results from asymmetric roughness profiles indicate that imaging characteristics of planar superlenses are independent of which interface the roughness is concentrated on.

[1]  Richard J. Blaikie,et al.  Imaging through planar silver lenses in the optical near field , 2005 .

[2]  Vladimir M. Shalaev,et al.  Optics: Beyond diffraction , 2007, Nature.

[3]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[4]  R. Blaikie,et al.  Super-resolution imaging through a planar silver layer. , 2005, Optics express.

[5]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[6]  Xiangang Luo,et al.  Design of oblate cylindrical perfect lens using coordinate transformation. , 2008, Optics express.

[7]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[8]  D. Smith,et al.  Comment on "Wave refraction in negative-index media: always positive and very inhomogeneous". , 2003, Physical review letters.

[9]  Nicholas X. Fang,et al.  Imaging properties of a metamaterial superlens , 2003 .

[10]  Lei Gao,et al.  Surface polaritons and imaging properties of a multi-layer structure containing negative-refractive-index materials , 2004 .

[11]  R M Walser,et al.  Wave refraction in negative-index media: always positive and very inhomogeneous. , 2002, Physical review letters.

[12]  N Garcia,et al.  Left-handed materials do not make a perfect lens. , 2002, Physical review letters.

[13]  Yi Xiong,et al.  Development of optical hyperlens for imaging below the diffraction limit. , 2007, Optics express.

[14]  D. Shao,et al.  Surface-plasmon-assisted nanoscale photolithography by polarized light , 2005 .

[15]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[16]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[17]  Jyh-Long Chern,et al.  Experimental realization of breaking diffraction limit by planar negative-index metamaterials in free space , 2005 .

[18]  Richard J. Blaikie,et al.  Submicron imaging with a planar silver lens , 2004 .

[19]  S. Chen,et al.  Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography. , 2006, Nano letters.

[20]  Xiangang Luo,et al.  Surface plasmon resonant interference nanolithography technique , 2004 .

[21]  Zhaowei Liu,et al.  Superlenses to overcome the diffraction limit. , 2008, Nature materials.

[22]  Richard J. Blaikie,et al.  Near-field optical lithography using a planar silver lens , 2004 .

[23]  Mankei Tsang,et al.  Magnifying perfect lens and superlens design by coordinate transformation , 2007, 0708.0262.

[24]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[25]  E. Narimanov,et al.  Semiclassical theory of the Hyperlens , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[26]  R. Greegor,et al.  Experimental verification and simulation of negative index of refraction using Snell's law. , 2003, Physical review letters.

[27]  Richard J. Blaikie,et al.  Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography , 2006 .

[28]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[29]  Z. Ye,et al.  Spontaneous emission in cylindrical periodically-layered structures , 1999 .

[30]  David R. Smith,et al.  Negative refraction of modulated electromagnetic waves , 2002 .

[31]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.