Nowadays, social media platforms use classification models to cope with hate speech and abusive language. The problem of these models is their vulnerability to bias. A prevalent form of bias in hate speech and abusive language datasets is annotator bias caused by the annotator’s subjective perception and the complexity of the annotation task. In our paper, we develop a set of methods to measure annotator bias in abusive language datasets and to identify different perspectives on abusive language. We apply these methods to four different abusive language datasets. Our proposed approach supports annotation processes of such datasets and future research addressing different perspectives on the perception of abusive language.