A Reliable and Reversible Image Privacy Protection Based on False Colors

Protection of visual privacy has become an indispensable component of video surveillance systems due to pervasive use of video cameras for surveillance purposes. In this paper, we propose two fully reversible privacy protection schemes implemented within the JPEG architecture. In both schemes, privacy protection is accomplished by using false colors with the first scheme being adaptable to other privacy protection filters while the second is false color-specific. Both schemes support either a lossless mode in which the original unprotected content can be fully extracted or a lossy mode, which limits file size while still maintaining intelligibility. Our method is not region-of-interest (ROI)-based and can be applied on entire frames without compromising intelligibility. This frees the user from having to define ROIs and improves security as tracking ROIs under dynamic content may fail, exposing sensitive information. Our experimental results indicate the favorability of our method over other commonly used solutions to protect visual privacy.

[1]  Peng Qi-cong A Survey on Digital Image Inpainting , 2007 .

[2]  Daniel A. Rodríguez-Silva,et al.  Video Surveillance Based on Cloud Storage , 2012, 2012 IEEE Fifth International Conference on Cloud Computing.

[3]  Allen R. Hanson,et al.  Distributed Smart Cameras for Aging in Place , 2006 .

[4]  Touradj Ebrahimi,et al.  Overview and evaluation of the JPEG XT HDR image compression standard , 2019, Journal of Real-Time Image Processing.

[5]  Vicki Bruce,et al.  Evaluating the effectiveness of pixelation and blurring on masking the identity of familiar faces , 2001 .

[6]  Bradley Malin,et al.  Preserving privacy by de-identifying face images , 2005, IEEE Transactions on Knowledge and Data Engineering.

[7]  Frederic Dufaux,et al.  Video scrambling for privacy protection in video surveillance: recent results and validation framework , 2011, Defense + Commercial Sensing.

[8]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[9]  Noboru Babaguchi,et al.  PriSurv: Privacy Protected Video Surveillance System Using Adaptive Visual Abstraction , 2008, MMM.

[10]  Touradj Ebrahimi,et al.  Scrambling for Privacy Protection in Video Surveillance Systems , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[11]  Wenjun Zeng,et al.  Efficient frequency domain selective scrambling of digital video , 2003, IEEE Trans. Multim..

[12]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[13]  Renju Mohan,et al.  Survey on Digital Image Inpainting , 2016 .

[14]  Jelena Tesic Metadata Practices for Consumer Photos , 2005, IEEE Multim..

[15]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[16]  Touradj Ebrahimi,et al.  Using face morphing to protect privacy , 2013, 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[17]  Latanya Sweeney,et al.  k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[18]  Zhenxing Qian,et al.  Reversible Data Hiding in Encrypted JPEG Bitstream , 2014, IEEE Transactions on Multimedia.

[19]  Wolfgang Straßer,et al.  Smart Camera Based Monitoring System and Its Application to Assisted Living , 2008, Proceedings of the IEEE.

[20]  Ralph Gross,et al.  Face De-identification , 2009, Protecting Privacy in Video Surveillance.

[21]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1992 .

[22]  Touradj Ebrahimi,et al.  Privacy-preserving photo sharing based on a secure JPEG , 2015, 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[23]  Andrew Hogue,et al.  Automated avatar creation for 3D games , 2007, Future Play.

[24]  Jian Weng,et al.  Enabling Secure and Fast Indexing for Privacy-Assured Healthcare Monitoring via Compressive Sensing , 2016, IEEE Transactions on Multimedia.

[25]  Mohan S. Kankanhalli,et al.  Privacy modeling for video data publication , 2010, 2010 IEEE International Conference on Multimedia and Expo.

[26]  Hans-Peter Seidel,et al.  Backward compatible high dynamic range MPEG video compression , 2006, SIGGRAPH 2006.

[27]  Alexandros André Chaaraoui,et al.  Visual Privacy by Context: A Level-Based Visualisation Scheme , 2014, UCAmI.

[28]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[29]  Touradj Ebrahimi,et al.  A framework for the validation of privacy protection solutions in video surveillance , 2010, 2010 IEEE International Conference on Multimedia and Expo.

[30]  Ralph Gross,et al.  Model-Based Face De-Identification , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[31]  Touradj Ebrahimi,et al.  Using warping for privacy protection in video surveillance , 2013, 2013 18th International Conference on Digital Signal Processing (DSP).

[32]  Anu Rachel Abraham,et al.  A Survey on Video Inpainting , 2012 .

[33]  Touradj Ebrahimi,et al.  MediaEval 2015 Drone Protect Task: Privacy Protection in Surveillance Systems Using False Coloring , 2015, MediaEval.

[34]  Osman Kaya,et al.  A Proposed Methodology for Evaluating HDR False Color Maps , 2016, TAP.

[35]  Lei Tang,et al.  Methods for encrypting and decrypting MPEG video data efficiently , 1997, MULTIMEDIA '96.

[36]  Aladdin Enterprises,et al.  ZLIB Compressed Data Format Specification version 3.3 , 1996 .

[37]  Nikola Pavesic,et al.  De-identification for privacy protection in multimedia content: A survey , 2016, Signal Process. Image Commun..

[38]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[39]  Habibollah Haron,et al.  Computer Generated Caricature: A Survey , 2010, 2010 International Conference on Cyberworlds.

[40]  Weiming Zhang,et al.  Reversible Data Hiding in Encrypted Images by Reversible Image Transformation , 2016, IEEE Transactions on Multimedia.

[41]  Edoardo M. Airoldi,et al.  Integrating Utility into Face De-identification , 2005, Privacy Enhancing Technologies.

[42]  Alexandros André Chaaraoui,et al.  Visual privacy protection methods: A survey , 2015, Expert Syst. Appl..

[43]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Touradj Ebrahimi,et al.  Framework for objective evaluation of privacy filters , 2013, Optics & Photonics - Optical Engineering + Applications.

[45]  Borko Furht,et al.  Fundamentals of Multimedia Encryption Techniques , 2006 .

[46]  Bernice E. Rogowitz,et al.  The "Which Blair project": a quick visual method for evaluating perceptual color maps , 2001, Proceedings Visualization, 2001. VIS '01..

[47]  Oliver Grau,et al.  How Not to Be Seen — Object Removal from Videos of Crowded Scenes , 2012, Comput. Graph. Forum.

[48]  Maryann Simmons,et al.  JPEG-HDR: a backwards-compatible, high dynamic range extension to JPEG , 2005, CIC.

[49]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Maryann Simmons,et al.  Subband encoding of high dynamic range imagery , 2004, APGV.

[51]  Shin-ichi Hanaki,et al.  Privacy protection by concealing persons in circumstantial video image , 2001, PUI '01.

[52]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[53]  Kevin E. Spaulding,et al.  Using a Residual Image to Extend the Color Gamut and Dynamic Range of an sRGB Image , 2003, PICS.

[54]  Mohan S. Kankanhalli,et al.  Privacy aware publication of surveillance video , 2013, Int. J. Trust. Manag. Comput. Commun..

[55]  Touradj Ebrahimi,et al.  Using false colors to protect visual privacy of sensitive content , 2015, Electronic Imaging.