Goodness-of-Fit Tests for Copulas of Multivariate Time Series

In this paper, we study the asymptotic behavior of the sequential empirical process and the sequential empirical copula process, both constructed from residuals of multivariate stochastic volatility models. Applications for the detection of structural changes and specification tests of the distribution of innovations are discussed. It is also shown that if the stochastic volatility matrices are diagonal, which is the case if the univariate time series are estimated separately instead of being jointly estimated, then the empirical copula process behaves as if the innovations were observed; a remarkable property. As a by-product, one also obtains the asymptotic behavior of rank-based measures of dependence applied to residuals of these time series models.

[1]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[2]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[3]  J. Kiefer,et al.  DISTRIBUTION FREE TESTS OF INDEPENDENCE BASED ON THE SAMPLE DISTRIBUTION FUNCTION , 1961 .

[4]  Peter J. Bickel,et al.  Convergence Criteria for Multiparameter Stochastic Processes and Some Applications , 1971 .

[5]  James Durbin,et al.  Weak convergence of the sample distribution function when parameters are estimated , 1973 .

[6]  D. Picard Testing and estimating change-points in time series , 1985, Advances in Applied Probability.

[7]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[8]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[9]  H. Neave Distribution-Free Tests , 1988 .

[10]  E. Carlstein Nonparametric Change-Point Estimation , 1988 .

[11]  Jushan Bai,et al.  Weak Convergence of the Sequential Empirical Processes of Residuals in ARMA Models , 1994 .

[12]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[13]  T. Louis,et al.  Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.

[14]  R. Engle,et al.  Multivariate Simultaneous Generalized ARCH , 1995, Econometric Theory.

[15]  James Xu,et al.  Statistical modelling and inference for multivariate and longitudinal discrete response data , 1996 .

[16]  Anthony S. Tay,et al.  Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .

[17]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[18]  Anthony S. Tay,et al.  Multivariate Density Forecast Evaluation and Calibration In Financial Risk Management: High-Frequency Returns on Foreign Exchange , 1999, Review of Economics and Statistics.

[19]  Empirical Process of the Squared Residuals of an ARCH Sequence , 2001 .

[20]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[21]  B. Rémillard,et al.  A Nonparametric Test of Serial Independence for Time Series and Residuals , 2001 .

[22]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[23]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[24]  S. Kotz,et al.  The Meta-elliptical Distributions with Given Marginals , 2002 .

[25]  Jushan Bai,et al.  Testing Parametric Conditional Distributions of Dynamic Models , 2003, Review of Economics and Statistics.

[26]  C. Genest,et al.  Multivariate Option Pricing Using Dynamic Copula Models , 2005 .

[27]  Wolfgang Breymann,et al.  Dependence structures for multivariate high-frequency data in finance , 2003 .

[28]  Kilani Ghoudi,et al.  Empirical Processes Based on Pseudo-observations 11: The Multivariate Case , 2004 .

[29]  M. Wegkamp,et al.  Weak Convergence of Empirical Copula Processes , 2004 .

[30]  Paul Embrechts,et al.  Dynamic copula models for multivariate high-frequency data in finance , 2004 .

[31]  Yanqin Fan,et al.  Simple Tests for Models of Dependence between Multiple Financial Time Series, with Applications to U.S. Equity Returns and Exchange Rates , 2004 .

[32]  B. Rémillard,et al.  Test of independence and randomness based on the empirical copula process , 2004 .

[33]  Credit Migration and Derivatives Pricing Using Copulas , 2005 .

[34]  H. Tsukahara,et al.  Semiparametric estimation in copula models , 2005 .

[35]  O. Scaillet,et al.  A Kolmogorov-Smirnov Type Test for Positive Quadrant Dependence , 2005 .

[36]  B. Rémillard,et al.  Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models , 2005 .

[37]  Friedrich Schmid,et al.  Testing Goodness of Fit for Parametric Families of Copulas—Application to Financial Data , 2005 .

[38]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[39]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[40]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[41]  D. Guégan,et al.  Change analysis of dynamic copula for measuring dependence in multivariate financial data , 2010 .

[42]  Marno Verbeek,et al.  Selecting Copulas for Risk Management , 2006 .

[43]  Friedrich Schmid,et al.  A goodness of fit test for copulas based on Rosenblatt's transformation , 2007, Comput. Stat. Data Anal..

[44]  B. Rémillard,et al.  Rank-Based Extensions of the Brock, Dechert, and Scheinkman Test , 2007 .

[45]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[46]  Artem Prokhorov,et al.  A Goodness-of-fit Test for Copulas , 2014 .

[47]  A. McNeil Sampling nested Archimedean copulas , 2008 .

[48]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[49]  Paul Embrechts,et al.  Testing for structural changes in exchange rates’ dependence beyond linear correlation , 2009 .

[50]  Daniel Berg,et al.  Local Power Analyses of Goodness‐of‐fit Tests for Copulas , 2009 .

[51]  Olivier Scaillet,et al.  Testing for Equality between Two Copulas , 2006, J. Multivar. Anal..

[52]  A. Harvey Tracking a changing copula , 2010 .

[53]  B. Rémillard,et al.  Diagnostic Tests for Innovations of ARMA Models Using Empirical Processes of Residuals , 2010 .

[54]  B. Rémillard,et al.  Validity of the Parametric Bootstrap for Goodness-of-Fit Testing in Dynamic Models , 2011 .

[55]  J. Segers Asymptotics of empirical copula processes under non-restrictive smoothness assumptions , 2010, 1012.2133.

[56]  Bruno Rémillard,et al.  Copula-Based Semiparametric Models for Multivariate Time Series , 2011, J. Multivar. Anal..

[57]  Bruno Rémillard,et al.  On testing for independence between the innovations of several time series , 2012 .