On Fractional-Order QFT Controllers

We propose the synthesis of robust fractional-order controllers using the principles of quantitative feedback theory (QFT). The resulting controllers are called as fractional-order QFT controllers. To demonstrate the synthesis method, we synthesize proportional-integral-derivative (PID) and more general types of fractional-order QFT controllers for a fractional-order plant, a DC motor, and a multistage flash desalination process.

[1]  Wen-Hua Chen,et al.  Automatic loop-shaping in QFT using genetic algorithms , 1998 .

[2]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[3]  M. S. Keshner 1/f noise , 1982, Proceedings of the IEEE.

[4]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[5]  Xavier Moreau,et al.  The CRONE Suspension , 1996 .

[6]  Isaac Horowitz,et al.  Quantitative feedback design theory : QFT , 1993 .

[7]  Osita D. I. Nwokah,et al.  Analytic Loop Shaping Methods in Quantitative Feedback Theory , 1994 .

[8]  G. Bryant,et al.  Optimal loop-shaping for systems with large parameter uncertainty via linear programming , 1995 .

[9]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[10]  Karl Johan Åström,et al.  Model Uncertainty and Robust Control , 2000 .

[11]  S. Manabe The non-integer integral and its application to control systems. , 1961 .

[12]  Jon G. Rokne,et al.  New computer methods for global optimization , 1988 .

[13]  Duarte Valério,et al.  Time-domain implementation of fractional order controllers , 2005 .

[14]  Y. Chen,et al.  Realization of fractional order controllers , 2003 .

[15]  I. Podlubny Fractional differential equations , 1998 .

[16]  J. C. Wang Realizations of Generalized Warburg Impedance with RC Ladder Networks and Transmission Lines , 1987 .

[17]  Paluri S. V. Nataraj,et al.  An Interval Analysis Algorithm for Automated Controller Synthesis in QFT Designs , 2007 .

[18]  A. Oustaloup,et al.  La commande crone : du scalaire au multivariable , 1999 .

[19]  Benoit B. Mandelbrot,et al.  Some noises with I/f spectrum, a bridge between direct current and white noise , 1967, IEEE Trans. Inf. Theory.

[20]  B. Onaral,et al.  Linear and nonlinear properties of platinum electrode polarisation. Part 1: frequency dependence at very low frequencies , 1982, Medical and Biological Engineering and Computing.

[21]  L. Dorcak,et al.  Two digital realizations of fractional controllers: Application to temperature control of a solid , 2001, 2001 European Control Conference (ECC).

[22]  Abdulla Ismail Robust QFT-based TBT control of MSF desalination plants , 2001 .

[23]  I. Horowitz,et al.  Optimization of the loop transfer function , 1980 .

[24]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[25]  Shunji Manabe,et al.  EARLY DEVELOPMENT OF FRACTIONAL ORDER CONTROL , 2003 .

[26]  Alain Oustaloup,et al.  Fractional Control-System Design for a Hydraulic Actuator , 2000 .

[27]  Christopher V. Hollot,et al.  Automatic loop-shaping of QFT controllers via linear programming , 1999 .

[28]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .