Novel C3V-symmetric tripodal scaffold, triethyl cis,cis,cis-2,5,8- tribenzyltrindane-2,5,8-tricarboxylate, for the construction of artificial receptors.

[reaction: see text] A novel C3V-symmetric scaffold, trindane 7, has been efficiently synthesized from 1,3,5-tris(bromomethyl)-2,4,6-tris(chloromethyl)benzene (1) in six steps with 47% overall yield. The control of all-syn stereochemistry in the tribenzylation step has been achieved by blocking one side of the trindane ring as metal carbonyl complexes. The potential utility of trindane 7 as a receptor skeleton has been examined with a urea derivative 12 toward several anionic guests.

[1]  A. D. Hamilton,et al.  Thermodynamic aspects of dicarboxylate recognition by simple artificial receptors. , 2001, The Journal of organic chemistry.

[2]  Philip A. Gale Anion receptor chemistry: highlights from 1999 , 2001 .

[3]  A. Hamilton,et al.  Selective anion binding by a macrocycle with convergent hydrogen bonding functionality. , 2001, Journal of the American Chemical Society.

[4]  Philip A. Gale,et al.  Anion Recognition and Sensing: The State of the Art and Future Perspectives. , 2001, Angewandte Chemie.

[5]  Ahn,et al.  Novel artificial receptors for alkylammonium ions with remarkable selectivity and affinity , 2000, Chemistry.

[6]  C. Lim,et al.  Intramolecular binding site organization by Pd(II) complexation with a resorcin[4]arene derivative , 2000 .

[7]  S. Dasgupta,et al.  Troger's base molecular scaffolds in dicarboxylic acid recognition. , 2000, The Journal of organic chemistry.

[8]  D. Reinhoudt,et al.  Dinuclear metallo-phosphodiesterase models: application of calix[4]arenes as molecular scaffolds , 2000 .

[9]  S. Kang,et al.  Upper Rim Urea Derivative of Calix[4]arene: Anion Selective Neutral Receptor. , 2000 .

[10]  S. Kang,et al.  Urea Derivatives of p‐tert‐Butylcalix[4]arenes: Anion Selective Neutral Receptors , 2000 .

[11]  D. Reinhoudt,et al.  Facilitated transport of hydrophilic salts by mixtures of anion and cation carriers and by ditopic carriers , 1999 .

[12]  E. Anslyn,et al.  A competition assay for determining glucose-6-phosphate concentration with a tris-boronic acid receptor , 1999 .

[13]  S. Kang,et al.  Urea derivative of calix[4]diquinone: HSO4− ion selective receptor , 1999 .

[14]  Park,et al.  A Rational Approach to Selective Recognition of NH(4)(+) over K(+). , 1999, Angewandte Chemie.

[15]  P. Beer,et al.  Anion Recognition Properties of New Upper-Rim Cobaltocenium Calix[4]arene Receptors , 1999 .

[16]  Kiyoshi Sato,et al.  A new tripodal anion receptor with CH···X− hydrogen bonding , 1999 .

[17]  J. Rebek,et al.  A TRIPHENYLENE SCAFFOLD WITH C3V-SYMMETRY AND NANOSCALE DIMENSIONS , 1999 .

[18]  A. P. Davis,et al.  A trifunctional steroid-based scaffold for combinatorial chemistry , 1999 .

[19]  P. Beer,et al.  SYNTHESIS AND CHARACTERISATION OF NOVEL RUTHENIUM(II) BIPYRIDYL AND FERROCENOYL CAVITAND RECEPTORS FOR THE RECOGNITION OF ANIONIC GUESTS , 1999 .

[20]  E. Gutiérrez‐Puebla,et al.  syn‐Trialkylated Truxenes: Building Blocks That Self‐Associate by Arene Stacking , 1999 .

[21]  V. Balzani,et al.  Anion recognition and luminescent sensing by new ruthenium(II) and rhenium(I) bipyridyl calix[4]diquinone receptors , 1999 .

[22]  A. P. Davis,et al.  Steroidal guanidinium receptors for the enantioselective recognition of N-acyl α-amino acids , 1999 .

[23]  P. Bühlmann,et al.  Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. , 1998, Chemical reviews.

[24]  V. Lynch,et al.  Recognition of Anions through NHπ Hydrogen Bonds in a Bicyclic Cyclophane—Selectivity for Nitrate , 1997 .

[25]  D. Hughes,et al.  Trindane−Ruthenium Sandwich Complexes: An NMR and X-ray Crystallographic Study of [(trindane)RuCl2]2, (trindane)RuCl2[P(OMe)3], and [(trindane)2Ru][BF4]2 , 1997 .

[26]  M. McGlinchey,et al.  Metal Complexes of Trindane: Possible Precursors of Sumanene , 1997 .

[27]  M. Havranek,et al.  Solvent and leaving group effects on the mono- vs. Dialkylation of alkali salts of diethyl malonate with 1,2-bis-, 1,2,4,5-tetrakis- and 1,2,3,4,5,6-hexakis-(Halomethyl)benzenes. A new insight into selectivity control of malonester synthesis , 1997 .

[28]  C. Krüger,et al.  Tricarbonyl(η6‐1,2‐dioxobenzocyclobutene)chromium(0): Preparation, Nucleophilic Addition Studies and Syntheses of cmplex Polycyclic Systems by Dianionic Oxy‐Cope Rearrangement , 1996 .

[29]  RaposoCésar,et al.  Tris(2-aminoethyl)amine, a Suitable Spacer for Phosphate and Sulfate Receptors , 1995 .

[30]  B. Gibb,et al.  Efficient Coupling of Amino Acid Derivatives to Rigid Organic Scaffolds: Model Syntheses for De Novo Proteins. , 1995 .

[31]  M. Hynes EQNMR : a computer program for the calculation of stability constants from nuclear magnetic resonance chemical shift data , 1993 .

[32]  D. Astruc The use of π-organoiron sandwiches in aromatic chemistry , 1993 .

[33]  D. Astruc Organoiron electron-reservoir complexes , 1986 .

[34]  G. Jaouen,et al.  Regiospecific and stereospecific functionalization of benzylic sites by tricarbonylchromium arene complexation , 1984 .