Benzoylthiourea-modified MCM-48 mesoporous silica for mercury(II) adsorption from aqueous solutions

[1]  A. Walcarius,et al.  Rate of Access to the Binding Sites in Organically Modified Silicates. 2. Ordered Mesoporous Silicas Grafted with Amine or Thiol Groups , 2003 .

[2]  M. Jaroniec,et al.  Benzoylthiourea-Modified Mesoporous Silica for Mercury(II) Removal , 2003 .

[3]  Bénédicte Lebeau,et al.  Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. , 2002, Chemical reviews.

[4]  A. Walcarius,et al.  Rate of Access to the Binding Sites in Organically Modified Silicates. 1. Amorphous Silica Gels Grafted with Amine or Thiol Groups , 2002 .

[5]  K. Tsutsumi,et al.  Surface Functionalization and Stabilization of Mesoporous Silica Spheres by Silanization and Their Adsorption Characteristics , 2002 .

[6]  L. Mercier,et al.  Mercury(II) Ion Adsorption Behavior in Thiol-Functionalized Mesoporous Silica Microspheres , 2002 .

[7]  R. Anwander SOMC@PMS. Surface Organometallic Chemistry at Periodic Mesoporous Silica† , 2001 .

[8]  N. Nishiyama,et al.  Enhancement of Hydrothermal Stability and Hydrophobicity of a Silica MCM-48 Membrane by Silylation , 2001 .

[9]  G. Stucky,et al.  Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium , 2000 .

[10]  P. Voort,et al.  Synthesis of stable, hydrophobic MCM-48/VOx catalysts using alkylchlorosilanes as coupling agents for the molecular designed dispersion of VO(acac)2 , 1999 .

[11]  S. Joo,et al.  Energetically favored formation of MCM-48 from cationic-neutral surfactant mixtures , 1999 .

[12]  M. Jaroniec,et al.  Adsorption, Thermogravimetric, and NMR Studies of FSM-16 Material Functionalized with Alkylmonochlorosilanes , 1999 .

[13]  J. P. Olivier,et al.  Standard Nitrogen Adsorption Data for Characterization of Nanoporous Silicas , 1999 .

[14]  Ruixia Liu,et al.  Removal of Cu(II), Zn(II), Cd(III) and Hg(II) from waste water by poly(acrylaminophosphonic)-type chelating fiber , 1999 .

[15]  K. Unger,et al.  Novel synthesis of spherical MCM-48 , 1999 .

[16]  T. Pinnavaia,et al.  Access in mesoporous materials: Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation , 1997 .

[17]  Kenneth M. Kemner,et al.  Functionalized Monolayers on Ordered Mesoporous Supports , 1997 .

[18]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[19]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[20]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[21]  E. Maginn,et al.  Heavy Metal Remediation Using Functionalized Mesoporous Silicas with Controlled Macrostructure , 2001 .

[22]  Jun Liu,et al.  Hybrid Mesoporous Materials with Functionalized Monolayers , 1998 .

[23]  A. Katritzky,et al.  Comprehensive organic functional group transformations II , 1995 .

[24]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .