Emergence of coherence and the dynamics of quantum phase transitions

Significance Quantum phase transitions are characterized by a dramatic change of the ground-state behavior; famous examples include the appearance of magnetic order or superconductivity as a function of doping in cuprates. In this work, we explore how a system dynamically crosses such a transition and in particular, investigate in detail how coherence emerges when an initially incoherent Mott insulating system enters the superfluid regime. We present results from an experimental study using ultracold atoms in an optical lattice as well as numerical simulations and find a rich behavior beyond the scope of any existing theory. This quantum simulation of a complex many-body system is an important stepping stone for a deeper understanding of the intricate dynamics of quantum phase transitions. The dynamics of quantum phase transitions pose one of the most challenging problems in modern many-body physics. Here, we study a prototypical example in a clean and well-controlled ultracold atom setup by observing the emergence of coherence when crossing the Mott insulator to superfluid quantum phase transition. In the 1D Bose–Hubbard model, we find perfect agreement between experimental observations and numerical simulations for the resulting coherence length. We, thereby, perform a largely certified analog quantum simulation of this strongly correlated system reaching beyond the regime of free quasiparticles. Experimentally, we additionally explore the emergence of coherence in higher dimensions, where no classical simulations are available, as well as for negative temperatures. For intermediate quench velocities, we observe a power-law behavior of the coherence length, reminiscent of the Kibble–Zurek mechanism. However, we find nonuniversal exponents that cannot be captured by this mechanism or any other known model.

[1]  M. Plenio,et al.  Universality in the Dynamics of Second-Order Phase Transitions. , 2013, Physical review letters.

[2]  W. Zurek,et al.  Quench in the 1D Bose-Hubbard model: Topological defects and excitations from the Kosterlitz-Thouless phase transition dynamics , 2013, Scientific Reports.

[3]  Wojciech H. Zurek,et al.  Universality of Phase Transition Dynamics: Topological Defects from Symmetry Breaking , 2013, 1310.1600.

[4]  K. Sacha,et al.  Condensate phase microscopy. , 2013, Physical review letters.

[5]  Edmond Orignac,et al.  Correlation dynamics during a slow interaction quench in a one-dimensional Bose gas. , 2013, Physical review letters.

[6]  M. Plenio,et al.  Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals , 2013, Nature Communications.

[7]  F. Dalfovo,et al.  Spontaneous creation of Kibble–Zurek solitons in a Bose–Einstein condensate , 2013, Nature Physics.

[8]  J. Rossnagel,et al.  Observation of the Kibble–Zurek scaling law for defect formation in ion crystals , 2013, Nature Communications.

[9]  M. Schreiber,et al.  Expansion dynamics of interacting bosons in homogeneous lattices in one and two dimensions. , 2013, Physical review letters.

[10]  J. Carrasquilla,et al.  Scaling of the gap, fidelity susceptibility, and Bloch oscillations across the superfluid-to-Mott-insulator transition in the one-dimensional Bose-Hubbard model , 2012, 1212.2219.

[11]  S. S. Hodgman,et al.  Negative Absolute Temperature for Motional Degrees of Freedom , 2012, Science.

[12]  M. Haque,et al.  Slow interaction ramps in trapped many-particle systems: Universal deviations from adiabaticity , 2011, 1110.0840.

[13]  A. Sørensen,et al.  Signatures of the superfluid to Mott insulator transition in equilibrium and in dynamical ramps , 2012, 1206.1648.

[14]  W. Zurek,et al.  Quench from Mott Insulator to Superfluid , 2012, 1206.1067.

[15]  S. Tung,et al.  Observation of Quantum Criticality with Ultracold Atoms in Optical Lattices , 2012, Science.

[16]  M. Cheneau,et al.  Propagation front of correlations in an interacting Bose gas , 2012, 1202.5558.

[17]  S. Gubser,et al.  Kibble-Zurek problem: Universality and the scaling limit , 2012, 1202.5277.

[18]  A. Daley,et al.  Preparation and spectroscopy of a metastable Mott-insulator state with attractive interactions. , 2012, Physical review letters.

[19]  D. Huse,et al.  Nonequilibrium dynamic critical scaling of the quantum Ising chain. , 2011, Physical review letters.

[20]  G. Roux,et al.  Slow quench dynamics of Mott-insulating regions in a trapped Bose gas , 2011, 1111.4214.

[21]  Immanuel Bloch,et al.  Light-cone-like spreading of correlations in a quantum many-body system , 2011, Nature.

[22]  J. Eisert,et al.  Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas , 2011, Nature Physics.

[23]  B. Demarco,et al.  Quantum quench of an atomic Mott insulator. , 2011, Physical review letters.

[24]  S. Tung,et al.  Exploring quantum criticality based on ultracold atoms in optical lattices , 2010, 1101.0284.

[25]  L. Viola,et al.  Dynamical critical scaling and effective thermalization in quantum quenches: Role of the initial state , 2010, 1011.0781.

[26]  Local versus global equilibration near the bosonic Mott-insulator-superfluid transition. , 2010, Physical review letters.

[27]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[28]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[29]  S. Mandt,et al.  Equilibration rates and negative absolute temperatures for ultracold atoms in optical lattices. , 2010, Physical review letters.

[30]  W. Zurek,et al.  Testing quantum adiabaticity with quench echo , 2010, 1007.3294.

[31]  M. Greiner,et al.  Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level , 2010, Science.

[32]  G. Biroli,et al.  Kibble-Zurek mechanism and infinitely slow annealing through critical points. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Jacek Dziarmaga,et al.  Dynamics of a quantum phase transition and relaxation to a steady state , 2009, 0912.4034.

[34]  M. L. Wall,et al.  Open Source TEBD: software for entangled quantum many-body dynamics , 2009 .

[35]  A. Polkovnikov,et al.  Universal Dynamics Near Quantum Critical Points , 2009, 0910.3692.

[36]  K. Sengupta,et al.  Non-equilibrium Dynamics of Quantum Systems: Order Parameter Evolution, Defect Generation, and Qubit Transfer , 2009, 0908.2922.

[37]  M. Inguscio,et al.  Observation of an Efimov spectrum in an atomic system , 2009, 0904.4453.

[38]  G. Santoro,et al.  Adiabatic dynamics in a spin-1 chain with uniaxial single-spin anisotropy , 2009, 0901.1384.

[39]  S. Will,et al.  Role of interactions in 87Rb-40K Bose-Fermi mixtures in a 3D optical lattice. , 2008, Physical review letters.

[40]  D. Sen,et al.  Defect production due to quenching through a multicritical point , 2008, 0807.3606.

[41]  L. Viola,et al.  Dynamical non-ergodic scaling in continuous finite-order quantum phase transitions , 2008, 0809.2831.

[42]  J. Eisert,et al.  Probing local relaxation of cold atoms in optical superlattices , 2008, 0808.3779.

[43]  Expansion of a quantum gas released from an optical lattice. , 2008, Physical review letters.

[44]  D. Sen,et al.  Quenching along a gapless line: A different exponent for defect density , 2008, 0805.3328.

[45]  A. Rey,et al.  Theory of correlations between ultra-cold bosons released from an optical lattice , 2008, 0803.2922.

[46]  A. Laeuchli,et al.  Spreading of correlations and entanglement after a quench in the one-dimensional Bose–Hubbard model , 2008, 0803.2947.

[47]  K. Sengupta,et al.  Defect production in nonlinear quench across a quantum critical point. , 2008, Physical review letters.

[48]  Self-trapping of bosons and fermions in optical lattices. , 2007, Physical review letters.

[49]  N. Prokof'ev,et al.  Monte Carlo study of the two-dimensional Bose-Hubbard model , 2007, 0710.2703.

[50]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[51]  J. Eisert,et al.  Exact relaxation in a class of nonequilibrium quantum lattice systems. , 2007, Physical review letters.

[52]  B. Svistunov,et al.  Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model , 2007, cond-mat/0701178.

[53]  D. R. Scherer,et al.  Vortex formation by merging of multiple trapped Bose-Einstein condensates. , 2006, Physical review letters.

[54]  W. Zurek,et al.  Dynamics of the Bose-Hubbard model: Transition from a Mott insulator to a superfluid , 2006, cond-mat/0601650.

[55]  D. Stamper-Kurn,et al.  Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate , 2006, Nature.

[56]  U. R. Fischer,et al.  Sweeping from the superfluid to the Mott phase in the Bose-Hubbard model. , 2006, Physical review letters.

[57]  J. Eisert,et al.  General entanglement scaling laws from time evolution. , 2006, Physical review letters.

[58]  F. Verstraete,et al.  Lieb-Robinson bounds and the generation of correlations and topological quantum order. , 2006, Physical review letters.

[59]  J. Cardy,et al.  Time dependence of correlation functions following a quantum quench. , 2006, Physical review letters.

[60]  L. Levitov,et al.  Entropy and correlation functions of a driven quantum spin chain (15 pages) , 2005, cond-mat/0512689.

[61]  P. Zoller,et al.  Dynamics of a quantum phase transition. , 2005, Physical review letters.

[62]  A. Mosk Atomic gases at negative kinetic temperature. , 2005, Physical review letters.

[63]  A. Polkovnikov Universal adiabatic dynamics in the vicinity of a quantum critical point , 2003, cond-mat/0312144.

[64]  T. Vojta Disorder-induced rounding of certain quantum phase transitions. , 2002, Physical review letters.

[65]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[66]  S. Sachdev Quantum Phase Transitions , 1999 .

[67]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[68]  Batrouni,et al.  Quantum critical phenomena in one-dimensional Bose systems. , 1990, Physical review letters.

[69]  Fisher,et al.  Boson localization and the superfluid-insulator transition. , 1989, Physical review. B, Condensed matter.

[70]  W. H. Zurek,et al.  Cosmological experiments in superfluid helium? , 1985, Nature.

[71]  T. Kibble,et al.  Some Implications of a Cosmological Phase Transition , 1980 .

[72]  D. W. Robinson,et al.  The finite group velocity of quantum spin systems , 1972 .

[73]  A. Messiah Quantum Mechanics , 1961 .