Thirty years of turnstiles and transport.

To characterize transport in a deterministic dynamical system is to compute exit time distributions from regions or transition time distributions between regions in phase space. This paper surveys the considerable progress on this problem over the past thirty years. Primary measures of transport for volume-preserving maps include the exiting and incoming fluxes to a region. For area-preserving maps, transport is impeded by curves formed from invariant manifolds that form partial barriers, e.g., stable and unstable manifolds bounding a resonance zone or cantori, the remnants of destroyed invariant tori. When the map is exact volume preserving, a Lagrangian differential form can be used to reduce the computation of fluxes to finding a difference between the actions of certain key orbits, such as homoclinic orbits to a saddle or to a cantorus. Given a partition of phase space into regions bounded by partial barriers, a Markov tree model of transport explains key observations, such as the algebraic decay of exit and recurrence distributions.

[1]  G. Haller Lagrangian Coherent Structures , 2015 .

[2]  J. Meiss,et al.  Statistics of the island-around-island hierarchy in Hamiltonian phase space. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  G. Radons,et al.  Weak ergodicity breaking and aging of chaotic transport in Hamiltonian systems. , 2014, Physical review letters.

[4]  Adam M. Fox,et al.  Barriers to transport and mixing in volume-preserving maps with nonzero flux , 2014, 1406.7569.

[5]  C. Manchein,et al.  Characterizing weak chaos in nonintegrable Hamiltonian systems: The fundamental role of stickiness and initial conditions , 2014, 1401.1453.

[6]  Erik M. Bollt,et al.  Applied and Computational Measurable Dynamics , 2013, Mathematical modeling and computation.

[7]  M. Richter,et al.  Global structure of regular tori in a generic 4D symplectic map. , 2013, Chaos.

[8]  R. E. de Carvalho,et al.  Multifractality, stickiness, and recurrence-time statistics. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  M. Robnik,et al.  Survey on the role of accelerator modes for anomalous diffusion: the case of the standard map. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  M. Richter,et al.  Visualization and comparison of classical structures and quantum states of four-dimensional maps. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Bob W. Rink,et al.  The laminations of a crystal near an anti-continuum limit , 2013, 1305.7193.

[12]  B A Mosovsky,et al.  Finite-time transport in volume-preserving flows. , 2013, Physical review letters.

[13]  R. MacKay,et al.  Bifurcations of transition states: Morse bifurcations , 2013, 1305.1967.

[14]  J. D. M. James Quadratic Volume-Preserving Maps: (Un)stable Manifolds, Hyperbolic Dynamics, and Vortex-Bubble Bifurcations , 2013 .

[15]  O. Agam,et al.  Fluctuations in the relaxation dynamics of mixed chaotic systems. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  H. Stöckmann,et al.  Universal quantum localizing transition of a partial barrier in a chaotic sea. , 2012, Physical review letters.

[17]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[18]  Adam M. Fox,et al.  Greene’s residue criterion for the breakup of invariant tori of volume-preserving maps , 2012, 1205.6143.

[19]  R. Llave,et al.  Computation of whiskered invariant tori and their associated manifolds: new fast algorithms , 2010, 1004.5231.

[20]  Jean-Luc Thiffeault,et al.  Topological Optimization of Rod-Stirring Devices , 2010, SIAM Rev..

[21]  J. Pöschel,et al.  A lecture on the classical KAM theorem , 2009, 0908.2234.

[22]  Stephen Wiggins,et al.  Geometrical models of the phase space structures governing reaction dynamics , 2009, 0906.4914.

[23]  K. Mitchell The topology of nested homoclinic and heteroclinic tangles , 2009 .

[24]  Roberto Venegeroles Universality of algebraic laws in hamiltonian systems. , 2008, Physical review letters.

[25]  J. Meiss,et al.  Resonance zones and lobe volumes for exact volume-preserving maps , 2008, 0812.1810.

[26]  Roberto Venegeroles Calculation of superdiffusion for the Chirikov-Taylor model. , 2008, Physical review letters.

[27]  Stephen Wiggins,et al.  Linked twist map formalism in two and three dimensions applied to mixing in tumbled granular flows , 2008, Journal of Fluid Mechanics.

[28]  J. Meiss,et al.  Generating forms for exact volume-preserving maps , 2008, 0803.4350.

[29]  G. Cristadoro,et al.  Universality of algebraic decays in Hamiltonian systems. , 2008, Physical review letters.

[30]  James D. Meiss,et al.  Visual explorations of dynamics: The standard map , 2008, 0801.0883.

[31]  J. Meiss,et al.  Canonical Melnikov theory for diffeomorphisms , 2007, 0706.2515.

[32]  James C. Keck,et al.  Variational Theory of Reaction Rates , 2007 .

[33]  K. Mitchell,et al.  A new topological technique for characterizing homoclinic tangles , 2006 .

[34]  A. Apte,et al.  Breakup of shearless meanders and "outer" tori in the standard nontwist map. , 2006, Chaos.

[35]  H. Kantz,et al.  Stickiness in Hamiltonian systems: from sharply divided to hierarchical phase space. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  J. D. Szezech,et al.  Finite-time Lyapunov spectrum for chaotic orbits of non-integrable Hamiltonian systems [rapid communication] , 2005 .

[37]  Allen H. Boozer,et al.  Physics of magnetically confined plasmas , 2005 .

[38]  G. Froyland Statistically optimal almost-invariant sets , 2005 .

[39]  Stephen Wiggins,et al.  Foundations of chaotic mixing , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  L. Hufnagel,et al.  Can simple renormalization theories describe the trapping of chaotic trajectories in mixed systems? , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[42]  R. Ruth An Introduction to Particle Accelerators , 2002 .

[43]  Christophe Golé Symplectic Twist Maps: Global Variational Techniques , 2001 .

[44]  M. Holman,et al.  The role of chaotic resonances in the Solar System , 2001, Nature.

[45]  Shane D. Ross,et al.  Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. , 2000, Chaos.

[46]  J. Meiss,et al.  Heteroclinic primary intersections and codimension one Melnikov method for volume-preserving maps. , 2000, Chaos.

[47]  Mark A. Stremler,et al.  Topological fluid mechanics of stirring , 2000, Journal of Fluid Mechanics.

[48]  G. Zaslavsky,et al.  Islands of accelerator modes and homoclinic tangles. , 1999, Chaos.

[49]  Sandro Vaienti,et al.  Statistics of Return Times:¶A General Framework and New Applications , 1999 .

[50]  O. Junge,et al.  On the Approximation of Complicated Dynamical Behavior , 1999 .

[51]  B. Chirikov,et al.  Asymptotic Statistics of Poincaré Recurrences in Hamiltonian Systems with Divided Phase Space , 1999 .

[52]  D.L.Shepelyansky,et al.  Asymptotic Statistics of Poincar\'e Recurrences in Hamiltonian Systems with Divided Phase Space , 1998, cond-mat/9807365.

[53]  J. Marsden,et al.  Mechanical integrators derived from a discrete variational principle , 1997 .

[54]  G. Zaslavsky,et al.  Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics. , 1997, Chaos.

[55]  J. Meiss Average exit time for volume-preserving maps. , 1996, Chaos.

[56]  S. Aubry Anti-integrability in dynamic and variational problems , 1995 .

[57]  Robert S. MacKay,et al.  Transport in 3D volume-preserving flows , 1994 .

[58]  J. Meiss Transient measures in the standard map , 1994 .

[59]  Vered Rom-Kedar,et al.  Homoclinic tangles-classification and applications , 1994 .

[60]  R. MacKay,et al.  Cantori for multiharmonic maps , 1993 .

[61]  Jacques Laskar,et al.  Frequency analysis for multi-dimensional systems: global dynamics and diffusion , 1993 .

[62]  R. Easton Transport of phase space volume near isolated invariant sets , 1993 .

[63]  J. Meiss,et al.  Exit times and transport for symplectic twist maps. , 1993, Chaos.

[64]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[65]  Stephen Wiggins,et al.  Chaotic transport in dynamical systems , 1991 .

[66]  Tippett,et al.  Connection between recurrence-time statistics and anomalous transport. , 1991, Physical review letters.

[67]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[68]  S. Wiggins,et al.  Lobe area in adiabatic Hamiltonian systems , 1991 .

[69]  R. Sagdeev,et al.  Chaotic jets with multifractal space-time random walk. , 1991, Chaos.

[70]  Robert W. Easton,et al.  Transport through chaos , 1991 .

[71]  Gregory S. Ezra,et al.  Transport and turnstiles in multidimensional Hamiltonian mappings for unimolecular fragmentation: Application to van der Waals predissociation , 1991 .

[72]  J. Meiss,et al.  Resonances and transport in the sawtooth map , 1990 .

[73]  S. Aubry,et al.  Chaotic trajectories in the standard map. The concept of anti-integrability , 1990 .

[74]  S. Wiggins,et al.  An analytical study of transport, mixing and chaos in an unsteady vortical flow , 1990, Journal of Fluid Mechanics.

[75]  R. MacKay Flux over a saddle , 1990 .

[76]  J. Stark,et al.  Converse KAM theory for symplectic twist maps , 1989 .

[77]  J. Meiss,et al.  Flux, resonances and the devil's staircase for the sawtooth map , 1989 .

[78]  J. Meiss,et al.  Periodic orbits for reversible, symplectic mappings , 1989 .

[79]  Meiss,et al.  Relation between quantum and classical thresholds for multiphoton ionization of excited atoms. , 1988, Physical review. A, General physics.

[80]  L. Polterovich On transport in dynamical systems , 1988 .

[81]  O. Piro,et al.  Passive scalars, three-dimensional volume-preserving maps, and chaos , 1988 .

[82]  Q. Chen Area as a devil's staircase in twist maps , 1987 .

[83]  James D. Meiss,et al.  Resonances in area-preserving maps , 1987 .

[84]  E. Spiegel,et al.  Strange Accumulators a , 1987 .

[85]  Kim,et al.  Simultaneous rational approximations in the study of dynamical systems. , 1986, Physical review. A, General physics.

[86]  Meiss Class renormalization: Islands around islands. , 1986, Physical review. A, General physics.

[87]  Robert S. MacKay,et al.  Boundary circles for area-preserving maps , 1986 .

[88]  R Hide,et al.  Chaos in Dynamic Systems , 1986 .

[89]  R. MacKay,et al.  Flux and differences in action for continuous time Hamiltonian systems , 1986 .

[90]  R. Easton Trellises formed by stable and unstable manifolds in the plane , 1986 .

[91]  Edward Ott,et al.  Markov tree model of transport in area-preserving maps , 1985 .

[92]  Flynn,et al.  Theory of classical diffusion jumps in solids. , 1985, Physical review. B, Condensed matter.

[93]  Farmer,et al.  Fat fractals on the energy surface. , 1985, Physical review letters.

[94]  James D. Meiss,et al.  Algebraic decay in self-similar Markov chains , 1985 .

[95]  Dima L. Shepelyansky,et al.  CORRELATION PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN SYSTEMS , 1984 .

[96]  L. Kadanoff,et al.  Extended chaos and disappearance of KAM trajectories , 1984 .

[97]  H. Aref Stirring by chaotic advection , 1984, Journal of Fluid Mechanics.

[98]  R. MacKay,et al.  STOCHASTICITY AND TRANSPORT IN HAMILTONIAN SYSTEMS , 1984 .

[99]  R. MacKay A renormalization approach to invariant circles in area-preserving maps , 1983 .

[100]  S. Aubry The twist map, the extended Frenkel-Kontorova model and the devil's staircase , 1983 .

[101]  Charles F. F. Karney,et al.  Effect of noise on the standard mapping , 1982, Physica D: Nonlinear Phenomena.

[102]  J. Lebowitz,et al.  NUMERICAL EXPERIMENTS IN STOCHASTICITY AND HOMOCLINIC OSCILLATION * , 1980 .

[103]  E. Pollak,et al.  Classical transition state theory is exact if the transition state is unique , 1979 .

[104]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[105]  M. Hénon Numerical study of quadratic area-preserving mappings , 1969 .

[106]  Eugene P. Wigner,et al.  Calculation of the Rate of Elementary Association Reactions , 1937 .

[107]  J. Meiss,et al.  Resonance Zones and Lobe Volumes for Volume-Preserving Maps , 2008 .

[108]  A. Celletti,et al.  On the break-down threshold of invariant tori in four dimensional maps , 2004 .

[109]  G. Froyland Using Ulam's method to calculate entropy and other dynamical invariants , 1999 .

[110]  O. Piro,et al.  An Introduction to Chaotic Advection , 1999 .

[111]  Robert W. Easton,et al.  Geometric methods for discrete dynamical systems , 1998 .

[112]  Stathis Tompaidis,et al.  Approximation of Invariant Surfaces by Periodic Orbits in High-Dimensional Maps: Some Rigorous Results , 1996, Exp. Math..

[113]  James D. Meiss,et al.  Cantori for symplectic maps near the anti-integrable limit , 1992 .

[114]  P. Holmes Transport in Two-Dimensional Maps , 1990 .

[115]  Robert W. Easton,et al.  Computing the dependence on a parameter of a family of unstable manifolds: generalized Melnikov formulas , 1984 .

[116]  J. Mather,et al.  Existence of quasi-periodic orbits for twist homeomorphisms of the annulus , 1982 .

[117]  S. Aubry The New Concept of Transitions by Breaking of Analyticity in a Crystallographic Model , 1978 .