Random Tessellations, Restricted Isometric Embeddings, and One Bit Sensing

We obtain mproved bounds for one bit sensing. For instance, let $ K_s$ denote the set of $ s$-sparse unit vectors in the sphere $ \mathbb S ^{n}$ in dimension $ n+1$ with sparsity parameter $ 0 < s < n+1$ and assume that $ 0 < \delta < 1$. We show that for $ m \gtrsim \delta ^{-2} s \log \frac ns$, the one-bit map $$ x \mapsto \bigl[ {sgn} \langle x,g_j \rangle \bigr] _{j=1} ^{m}, $$ where $ g_j$ are iid gaussian vectors on $ \mathbb R ^{n+1}$, with high probability has $ \delta $-RIP from $ K_s$ into the $ m$-dimensional Hamming cube. These bounds match the bounds for the {linear} $ \delta $-RIP given by $ x \mapsto \frac 1m[\langle x,g_j \rangle ] _{j=1} ^{m} $, from the sparse vectors in $ \mathbb R ^{n}$ into $ \ell ^{1}$. In other words, the one bit and linear RIPs are equally effective. There are corresponding improvements for other one-bit properties, such as the sign-product RIP property.

[1]  Yaniv Plan,et al.  Dimension Reduction by Random Hyperplane Tessellations , 2014, Discret. Comput. Geom..

[2]  Laurent Jacques,et al.  Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors , 2011, IEEE Transactions on Information Theory.

[3]  Richard G. Baraniuk,et al.  Exponential Decay of Reconstruction Error From Binary Measurements of Sparse Signals , 2014, IEEE Transactions on Information Theory.

[4]  M. Talagrand Upper and Lower Bounds for Stochastic Processes , 2021, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.

[5]  K. Alexander,et al.  Probability Inequalities for Empirical Processes and a Law of the Iterated Logarithm , 1984 .

[6]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[7]  Piotr Indyk,et al.  Almost-Euclidean Subspaces of l1N\ell_1^N via Tensor Products: A Simple Approach to Randomness Reduction , 2010, APPROX-RANDOM.

[8]  Yaniv Plan,et al.  One‐Bit Compressed Sensing by Linear Programming , 2011, ArXiv.

[9]  Laurent Jacques,et al.  Small width, low distortions: quasi-isometric embeddings with quantized sub-Gaussian random projections , 2015, ArXiv.

[10]  G. Schechtman Two observations regarding embedding subsets of Euclidean spaces in normed spaces , 2006 .

[11]  Wansoo T. Rhee,et al.  Martingale Inequalities and NP-Complete Problems , 1987, Math. Oper. Res..

[12]  Laurent Jacques,et al.  Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing , 2013, ArXiv.

[13]  Josef Dick,et al.  Point Sets on the Sphere $\mathbb{S}^{2}$ with Small Spherical Cap Discrepancy , 2011, Discret. Comput. Geom..

[14]  Richard G. Baraniuk,et al.  1-Bit compressive sensing , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[15]  D. Panchenko Some Extensions of an Inequality of Vapnik and Chervonenkis , 2002, math/0405342.

[16]  K. Stolarsky,et al.  SUMS OF DISTANCES BETWEEN POINTS ON A SPHERE, n , 2010 .

[17]  Yaniv Plan,et al.  Robust 1-bit Compressed Sensing and Sparse Logistic Regression: A Convex Programming Approach , 2012, IEEE Transactions on Information Theory.

[18]  B. Klartaga,et al.  Empirical processes and random projections , 2004 .

[19]  K. Stolarsky Sums of distances between points on a sphere. II , 1972 .