HOLMES: The electron capture decay of 163Ho to measure the electron neutrino mass with sub-eV sensitivity

[1]  Andrew S. Hoover,et al.  Integration of TES Microcalorimeters With Microwave SQUID Multiplexed Readout , 2015, IEEE Transactions on Applied Superconductivity.

[2]  L. Rosenberg,et al.  Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation. , 2014, Physical review letters.

[3]  R. Robertson Can neutrino mass be measured in low-energy electron capture decay? , 2014 .

[4]  Nathalie Palanque-Delabrouille,et al.  Constraint on neutrino masses from SDSS-III/BOSS Lyα forest and other cosmological probes , 2014, 1410.7244.

[5]  G. Kunde,et al.  Integration of Radioactive Material with Microcalorimeter Detectors , 2014 .

[6]  B. Dober,et al.  MUSTANG2: a large focal plan array for the 100 meter Green Bank Telescope , 2014, Astronomical Telescopes and Instrumentation.

[7]  A. Nucciotti Statistical sensitivity of $$^{163}$$163Ho electron capture neutrino mass experiments , 2014, 1405.5060.

[8]  D. Bagliani,et al.  Thermal Properties of Holmium-Implanted Gold Films , 2014 .

[9]  C. Kilbourne,et al.  Preliminary Results of the MARE Experiment , 2014 .

[10]  Joseph W. Fowler,et al.  High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array , 2013, 1310.7287.

[11]  F. M. Nortier,et al.  Evaluation of 163Ho production options for neutrino mass measurements with microcalorimeter detectors , 2013 .

[12]  B. Bumble,et al.  ARCONS: A 2024 Pixel Optical through Near-IR Cryogenic Imaging Spectrophotometer , 2013, 1306.4674.

[13]  K. Blaum,et al.  The Electron Capture $$^{163}$$163Ho Experiment ECHo , 2013, 1309.5214.

[14]  A. D. R'ujula Two old ways to measure the electron-neutrino mass , 2013, 1305.4857.

[15]  A. Singer,et al.  Limit on sterile neutrino contribution from the Mainz Neutrino Mass Experiment , 2012, 1210.4194.

[16]  Dan Werthimer,et al.  A readout for large arrays of microwave kinetic inductance detectors. , 2012, The Review of scientific instruments.

[17]  M. Günther,et al.  207 PRODUCTION OF RADIOISOTOPES WITH HIGH SPECIFIC ACTIVITY BY PHOTONUCLEAR REACTIONS: FROM A “WILD IDEA” TO REALITY , 2012 .

[18]  S. Ragazzi,et al.  The Electron Capture Decay of 163 Ho to Measure the Electron Neutrino Mass with sub-eV Accuracy and Beyond , 2012, 1202.4763.

[19]  G. C. Hilton,et al.  Code-division multiplexing for x-ray microcalorimeters , 2012, 1201.6289.

[20]  N. M. Larson,et al.  ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .

[21]  M. Sorel,et al.  The Search for neutrinoless double beta decay , 2011, 1109.5515.

[22]  A. A. Golubev,et al.  An upper limit on electron antineutrino mass from Troitsk experiment , 2011, 1108.5034.

[23]  A. Letourneau,et al.  The reactor antineutrino anomaly , 2011, 1101.2755.

[24]  M. Vignati,et al.  Relic antineutrino capture on 163Ho decaying nuclei , 2010, 1012.0760.

[25]  Jonas Zmuidzinas,et al.  Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V , 2016 .

[26]  S. D. Rosner,et al.  A Penning sputter ion source with very low energy spread , 2010 .

[27]  M. Gonzalez-Garcia,et al.  Updated global fit to three neutrino mixing: status of the hints of θ13 > 0 , 2010, 1001.4524.

[28]  M. I. O. Technology,et al.  Relativistic cyclotron radiation detection of tritium decay electrons as a new technique for measuring the neutrino mass , 2009, 0904.2860.

[29]  E. Lisi,et al.  Neutrino masses and mixing: 2008 status , 2009 .

[30]  E. Otten,et al.  Neutrino mass limit from tritium β decay , 2008, 0909.2104.

[31]  D. Boyanovsky,et al.  Constraints on dark matter particles from theory, galaxy observations and N-body simulations , 2007, 0710.5180.

[32]  Christian Enss,et al.  Cryogenic particle detection , 2005 .

[33]  G. Hilton,et al.  Transition-Edge Sensors , 2005 .

[34]  B. Margesin,et al.  New limits from the Milano neutrino mass experiment with thermal microcalorimeters , 2004 .

[35]  B. Margesin,et al.  Bolometric bounds on the antineutrino mass. , 2003, Physical review letters.

[36]  Balraj Singh,et al.  Nuclear Data Sheets for A = 163 , 2000 .

[37]  Max Tegmark,et al.  Weighing Neutrinos with Galaxy Surveys , 1997, astro-ph/9712057.

[38]  A. Rújula,et al.  Calorimetric measurements of 163holmium decay as tools to determine the electron neutrino mass , 1982 .

[39]  Mau H. Chen,et al.  Atomic electron excitation probabilities during orbital electron capture by the nucleus , 1979 .

[40]  C. W. Nestor,et al.  Calculation of Electron Shake-Off Probabilities as the Result of X-Ray Photoionization of the Rare Gases , 1973 .

[41]  J. Power,et al.  PREPARATION OF LONG-LIVED HOLMIUM-163 , 1960 .

[42]  D. Shoenberg Low Temperature Physics , 1948, Nature.

[43]  E. Fermi Versuch einer Theorie der β-Strahlen. I , 1934 .

[44]  E. Fermi An attempt of a theory of beta radiation. 1. , 1934 .