Seed dormancy and the control of germination.

Seed dormancy is an innate seed property that defines the environmental conditions in which the seed is able to germinate. It is determined by genetics with a substantial environmental influence which is mediated, at least in part, by the plant hormones abscisic acid and gibberellins. Not only is the dormancy status influenced by the seed maturation environment, it is also continuously changing with time following shedding in a manner determined by the ambient environment. As dormancy is present throughout the higher plants in all major climatic regions, adaptation has resulted in divergent responses to the environment. Through this adaptation, germination is timed to avoid unfavourable weather for subsequent plant establishment and reproductive growth. In this review, we present an integrated view of the evolution, molecular genetics, physiology, biochemistry, ecology and modelling of seed dormancy mechanisms and their control of germination. We argue that adaptation has taken place on a theme rather than via fundamentally different paths and identify similarities underlying the extensive diversity in the dormancy response to the environment that controls germination.

[1]  C. Bailey,et al.  Plant Systematics: A Phylogenetic Approach , 2008 .

[2]  Stefanie Tintelnot,et al.  Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. , 2006, Plant & cell physiology.

[3]  P. Toorop,et al.  Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. , 2006, The Plant journal : for cell and molecular biology.

[4]  R. Benech-Arnold,et al.  The role of fluctuations in soil water content on the regulation of dormancy changes in buried seeds of Polygonum aviculare L. , 2006, Seed Science Research.

[5]  S. Meyer,et al.  A hydrothermal after-ripening time model for seed dormancy loss in Bromus tectorum L. , 2006, Seed Science Research.

[6]  E. Nambara,et al.  Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. , 2006, The Plant journal : for cell and molecular biology.

[7]  Russell L. Jones,et al.  Nitric oxide reduces seed dormancy in Arabidopsis. , 2006, Journal of experimental botany.

[8]  Maria Müller Polarity in Plants, K. Lindsey (Ed.). Blackwell Publishing, CRC Press, Oxford, UK (2004), (346pp., price USD 99.50), ISBN: 1-40511-432-0 , 2006 .

[9]  M. Tsiantis Plant Development: Multiple Strategies for Breaking Seed Dormancy , 2006, Current Biology.

[10]  Gerhard Leubner-Metzger,et al.  Plant hormone interactions during seed dormancy release and germination , 2005, Seed Science Research.

[11]  J. Walck The Ecology of Seeds Michael Fenner and Ken Thompson. x + 250 pp. Cambridge University Press, Cambridge, UK. 2005. 0-521-65311-8 $90.00 (hardback), 0-521-65368-1 $45.00 (paperback) , 2005, Seed Science Research.

[12]  K. Thompson,et al.  Germination of drupelets in multi-seeded drupes of the shrub Leptecophylla tameiameiae (Ericaceae) from Hawaii: a case for deep physiological dormancy broken by high temperatures , 2005, Seed Science Research.

[13]  C. Baskin,et al.  Underdeveloped embryos in dwarf seeds and implications for assignment to dormancy class , 2005, Seed Science Research.

[14]  Po-Pu Liu,et al.  The BME3 (Blue Micropylar End 3) GATA zinc finger transcription factor is a positive regulator of Arabidopsis seed germination. , 2005, The Plant journal : for cell and molecular biology.

[15]  K. Halliday,et al.  Cold and Light Control Seed Germination through the bHLH Transcription Factor SPATULA , 2005, Current Biology.

[16]  P. Ramakrishna,et al.  The perisperm-endosperm envelope in Cucumis: structure, proton diffusion and cell wall hydrolysing activity. , 2005, Annals of botany.

[17]  W. Finch-Savage,et al.  Sensitivity of Brassica oleracea seed germination to hypoxia: A QTL analysis , 2005 .

[18]  K. Donohue,et al.  Seeds and seasons: interpreting germination timing in the field , 2005, Seed Science Research.

[19]  C. Baskin,et al.  Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns , 2005, Seed Science Research.

[20]  Y. Gutterman,et al.  Annual rhythm of germination of seeds of Mesembryanthemum nodiflorum 32 years after collection , 2005, Seed Science Research.

[21]  K. Yoneyama,et al.  The modulating effect of the perisperm-endosperm envelope on ABA-inhibition of seed germination in cucumber. , 2005, Journal of experimental botany.

[22]  K. Bradford,et al.  Hydrothermal time analysis of seed dormancy in true (botanical) potato seeds , 2005, Seed Science Research.

[23]  R. Benech-Arnold,et al.  Incubation under fluctuating temperatures reduces mean base water potential for seed germination in several non-cultivated species , 2005, Seed Science Research.

[24]  F. Gubler,et al.  Dormancy release, ABA and pre-harvest sprouting. , 2005, Current opinion in plant biology.

[25]  H. Truong,et al.  Nitrate, a signal relieving seed dormancy in Arabidopsis. , 2005, Plant, cell & environment.

[26]  S. J. Ambrose,et al.  The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. , 2005, The Plant journal : for cell and molecular biology.

[27]  Philippe Lucas,et al.  Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia , 2005, Plant Molecular Biology.

[28]  J. Bewley,et al.  Exogenous gibberellins inhibit coffee (Coffea arabica cv. Rubi) seed germination and cause cell death in the embryo. , 2005, Journal of experimental botany.

[29]  Po-Pu Liu,et al.  Large-scale screening of Arabidopsis enhancer-trap lines for seed germination-associated genes. , 2005, The Plant journal : for cell and molecular biology.

[30]  Yuji Kamiya,et al.  Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. , 2005, The Plant journal : for cell and molecular biology.

[31]  K. Thompson,et al.  The Ecology of Seeds: References , 2005 .

[32]  W. Finch-Savage,et al.  Development of combined imbibition and hydrothermal threshold models to simulate maize (Zea mays) and chickpea (Cicer arietinum) seed germination in variable environments. , 2004, The New phytologist.

[33]  R. Benech-Arnold,et al.  Changes in the light sensitivity of buried Polygonum aviculare seeds in relation to cold-induced dormancy loss: development of a predictive model. , 2004, The New phytologist.

[34]  C. Baskin,et al.  On criteria to use in studies of seed evolution , 2004, Seed Science Research.

[35]  G. Leubner-Metzger,et al.  beta-1,3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. , 2004, The Plant journal : for cell and molecular biology.

[36]  Eunkyoo Oh,et al.  PIL5, a Phytochrome-Interacting Basic Helix-Loop-Helix Protein, Is a Key Negative Regulator of Seed Germination in Arabidopsis thalianaw⃞ , 2004, The Plant Cell Online.

[37]  K. Dixon,et al.  A Compound from Smoke That Promotes Seed Germination , 2004, Science.

[38]  P. Toorop,et al.  Abscisic acid controls embryo growth potential and endosperm cap weakening during coffee (Coffea arabica cv. Rubi) seed germination , 2004, Planta.

[39]  M. Koornneef,et al.  Analysis of Natural Allelic Variation of Arabidopsis Seed Germination and Seed Longevity Traits between the Accessions Landsberg erecta and Shakdara, Using a New Recombinant Inbred Line Population1 , 2004, Plant Physiology.

[40]  C. Bailly Active oxygen species and antioxidants in seed biology , 2004, Seed Science Research.

[41]  M. Koornneef,et al.  Naturally occurring genetic variation in Arabidopsis thaliana. , 2004, Annual review of plant biology.

[42]  Y. Kamiya,et al.  The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′‐hydroxylases: key enzymes in ABA catabolism , 2004, The EMBO journal.

[43]  M. Wagner,et al.  Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana , 2004, Planta.

[44]  J. Vandekerckhove,et al.  The Effect of α-Amanitin on the Arabidopsis Seed Proteome Highlights the Distinct Roles of Stored and Neosynthesized mRNAs during Germination1 , 2004, Plant Physiology.

[45]  M. E. Foley,et al.  Multiple Loci and Epistases Control Genetic Variation for Seed Dormancy in Weedy Rice (Oryza sativa) , 2004, Genetics.

[46]  C. Baskin,et al.  A classification system for seed dormancy , 2004, Seed Science Research.

[47]  H. Pritchard,et al.  Germination of Aesculus hippocastanum seeds following cold-induced dormancy loss can be described in relation to a temperature-dependent reduction in base temperature (Tb ) and thermal time. , 2004, The New phytologist.

[48]  Yuji Kamiya,et al.  Activation of Gibberellin Biosynthesis and Response Pathways by Low Temperature during Imbibition of Arabidopsis thaliana Seeds On-line version contains Web-only data. , 2004, The Plant Cell Online.

[49]  Allan Stensballe,et al.  Proteomic Analysis of Glycosylphosphatidylinositol-anchored Membrane Proteins* , 2003, Molecular & Cellular Proteomics.

[50]  Pamela S Soltis,et al.  The Role of Phylogenetics in Comparative Genetics1 , 2003, Plant Physiology.

[51]  Ayuko Kuwahara,et al.  Gibberellin Biosynthesis and Response during Arabidopsis Seed Germination Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.011650. , 2003, The Plant Cell Online.

[52]  M. Koornneef,et al.  Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. , 2003, Genetics.

[53]  J. Bakker,et al.  Are seed dormancy and persistence in soil related? , 2003, Seed Science Research.

[54]  L. Petruzzelli,et al.  Distinct expression patterns of β-1,3-glucanases and chitinases during the germination of Solanaceous seeds , 2003, Seed Science Research.

[55]  C. Baskin Breaking physical dormancy in seeds – focussing on the lens , 2003 .

[56]  Eiji Nambara,et al.  ABA action and interactions in seeds. , 2003, Trends in plant science.

[57]  P. Allen When and how many? Hydrothermal models and the prediction of seed germination , 2003 .

[58]  G. Leubner‐Metzger Functions and regulation of β-1,3-glucanases during seed germination, dormancy release and after-ripening , 2003, Seed Science Research.

[59]  A. Mead,et al.  One-step analysis of seed storage data and the longevity of Arabidopsis thaliana seeds. , 2003, Journal of experimental botany.

[60]  R. Gallagher,et al.  Dormancy release in Lolium rigidum seeds is a function of thermal after-ripening time and seed water content. , 2003, Functional plant biology : FPB.

[61]  I. Al‐Shehbaz,et al.  Molecular Systematics, Evolution, and Population Biology in the Mustard Family (Brassicaceae) , 2003 .

[62]  K. L. Poff,et al.  The effects of potassium nitrate and NO-donors on phytochrome A- and phytochrome B-specific induced germination of Arabidopsis thaliana seeds , 2002, Seed Science Research.

[63]  I. Baldwin,et al.  Vegetation-derived abscisic acid and four terpenes enforce dormancy in seeds of the post-fire annual, Nicotiana attenuata , 2002, Seed Science Research.

[64]  S. Floyd,et al.  THE EVOLUTION OF EMBRYO SIZE IN ANGIOSPERMS AND OTHER SEED PLANTS: IMPLICATIONS FOR THE EVOLUTION OF SEED DORMANCY , 2002, Evolution; international journal of organic evolution.

[65]  I. Graham,et al.  Germination and storage reserve mobilization are regulated independently in Arabidopsis. , 2002, The Plant journal : for cell and molecular biology.

[66]  Daphne Preuss,et al.  Beyond the Arabidopsis Genome: Opportunities for Comparative Genomics1 , 2002, Plant Physiology.

[67]  Kent J. Bradford,et al.  A hydrothermal time model explains the cardinal temperatures for seed germination , 2002 .

[68]  F. Borghetti,et al.  Possible involvement of proteasome activity in ethylene- induced germination of dormant sunflower embryos , 2002 .

[69]  W. Finch-Savage,et al.  Identification of abscisic acid, indole-3-acetic acid, jasmonic acid, indole-3-acetonitrile, methyl jasmonate and gibberellins in developing, dormant and stratified seeds of ash (Fraxinus excelsior) , 2002, Plant Growth Regulation.

[70]  G. Leubner-Metzger,et al.  Seed after-ripening and over-expression of class I β-1,3-glucanase confer maternal effects on tobacco testa rupture and dormancy release , 2002, Planta.

[71]  J. Bewley,et al.  Membranes and seed dormancy: beyond the anaesthetic hypothesis , 2002, Seed Science Research.

[72]  Kent J. Bradford,et al.  Applications of hydrothermal time to quantifying and modeling seed germination and dormancy , 2002, Weed Science.

[73]  F. Corbineau,et al.  Breakage of Pseudotsuga menziesii seed dormancy by cold treatment as related to changes in seed ABA sensitivity and ABA levels. , 2002, Physiologia plantarum.

[74]  Y. Kamiya,et al.  Gibberellins and Light-Stimulated Seed Germination , 2001, Journal of Plant Growth Regulation.

[75]  F. Meins,et al.  Antisense-transformation reveals novel roles for class I beta-1,3-glucanase in tobacco seed after-ripening and photodormancy. , 2001, Journal of experimental botany.

[76]  G. Leubner-Metzger,et al.  Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways , 2001, Planta.

[77]  S. Adkins,et al.  Smoke derived from burnt vegetation stimulates germination of arable weeds , 2001, Seed Science Research.

[78]  K. Bradford,et al.  Class I beta-1,3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. , 2001, Plant physiology.

[79]  P. Rinne,et al.  The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. , 2001, The Plant journal : for cell and molecular biology.

[80]  P. Schopfer,et al.  Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. , 2001, Plant physiology.

[81]  H. Bouwmeester,et al.  A simulation model for seasonal changes in dormancy and germination of weed seeds , 2001, Seed Science Research.

[82]  G. King,et al.  Quantitative genetic analysis of seed vigour and pre‐emergence seedling growth traits in Brassica oleracea , 2000 .

[83]  Susan E. Meyer,et al.  Using hydrothermal time concepts to model seed germination response to temperature, dormancy loss, and priming effects in Elymus elymoides , 2000, Seed Science Research.

[84]  P. Toorop,et al.  The second step of the biphasic endosperm cap weakening that mediates tomato (Lycopersicon esculentum) seed germination is under control of ABA. , 2000, Journal of experimental botany.

[85]  F. Forcella,et al.  Environmental control of dormancy in weed seed banks in soil , 2000 .

[86]  C. Rivin,et al.  Gibberellins and seed development in maize. II. Gibberellin synthesis inhibition enhances abscisic acid signaling in cultured embryos. , 2000, Plant physiology.

[87]  P. Hedden,et al.  Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. , 2000, Plant physiology.

[88]  R. C. Brown,et al.  The specialized chalazal endosperm inArabidopsis thaliana andLepidium virginicum (Brassicaceae) , 2000, Protoplasma.

[89]  M. Koornneef,et al.  Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. , 2000, Plant physiology.

[90]  Bradford,et al.  Callose deposition is responsible for apoplastic semipermeability of the endosperm envelope of muskmelon seeds , 1998, Plant physiology.

[91]  J. Casal,et al.  Phytochromes and seed germination , 1998, Seed Science Research.

[92]  S. Meyer,et al.  A simulation model to predict seed dormancy loss in the field for Bromus tectorum L. , 1998 .

[93]  Nicole Propst,et al.  Seeds: Ecology, Biogeography, and, Evolution of Dormancy and Germination , 1998 .

[94]  D. T. Booth,et al.  Biophysical, physiological and biochemical processes regulating seed germination , 1998, Seed Science Research.

[95]  H. Hilhorst The regulation of secondary dormancy. The membrane hypothesis revisite , 1998, Seed Science Research.

[96]  R. Bino,et al.  Nuclear Replication Activity During Seed Development, Dormancy Breakage and Germination in Three Tree Species: Norway Maple (Acer platanoidesL.), Sycamore (Acer pseudoplatanusL.) and Cherry (Prunus aviumL.) , 1998 .

[97]  P. Toorop,et al.  Review on dormancy, germinability and germination in crop and weed seeds. , 1997 .

[98]  J. Bewley Breaking down the walls — a role for endo-β-mannanase in release from seed dormancy? , 1997 .

[99]  A. Tarquis,et al.  The role of temperature in the seed germination of two species of the Solanum nigrum complex , 1997 .

[100]  M. E. Foley,et al.  Genetic and molecular control of seed dormancy , 1997 .

[101]  J. Bewley,et al.  Seed Germination and Dormancy. , 1997, The Plant cell.

[102]  R. Benech-Arnold,et al.  Hormonal Regulation of Dormancy in Developing Sorghum Seeds , 1997, Plant physiology.

[103]  S. Meyer,et al.  A hydrothermal time model of seed after-ripening in Bromus tectorum L. , 1996, Seed Science Research.

[104]  M. Cohn Operational and philosophical decisions in seed dormancy research , 1996, Seed Science Research.

[105]  C. M. Karssen,et al.  Redefining seed dormancy: an attempt to integrate physiology and ecology , 1995 .

[106]  H. Hilhorst A critical update on seed dormancy. I. Primary dormancy , 1995, Seed Science Research.

[107]  K. Bradford,et al.  Germination and Dormancy of Abscisic Acid- and Gibberellin-Deficient Mutant Tomato (Lycopersicon esculentum) Seeds (Sensitivity of Germination to Abscisic Acid, Gibberellin, and Water Potential) , 1993, Plant physiology.

[108]  K. Phelps,et al.  Onion (Allium cepa L.) Seedling Emergence Patterns can be Explained by the Influence of Soil Temperature and Water Potential on Seed Germination , 1993 .

[109]  L. Malek,et al.  Dry pea seed proteasome : purification and enzymic activities. , 1992, Plant physiology.

[110]  C. M. Karssen,et al.  Dormancy and Germination of Abscisic Acid-Deficient Tomato Seeds : Studies with the sitiens Mutant. , 1992, Plant physiology.

[111]  M. L. le Page-Degivry,et al.  In Situ Abscisic Acid Synthesis : A Requirement for Induction of Embryo Dormancy in Helianthus annuus. , 1992, Plant physiology.

[112]  K. Bradford,et al.  Quantitative models characterizing seed germination responses to abscisic Acid and osmoticum. , 1992, Plant physiology.

[113]  K. Bradford A water relations analysis of seed germination rates. , 1990, Plant physiology.

[114]  C. M. Karssen,et al.  Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-deficient mutants , 1987, Planta.

[115]  E. Werker,et al.  Germination Preventing Mechanisms in Iris Seeds , 1986 .

[116]  K. Thompson,et al.  Seeds: Physiology of Development and Germination , 1986 .

[117]  R. J. Gummerson The Effect of Constant Temperatures and Osmotic Potentials on the Germination of Sugar Beet , 1986 .

[118]  J. Roberts,et al.  The control of seed germination in Trollius ledebouri: The breaking of dormancy , 1985, Planta.

[119]  J. Monteith,et al.  Time, Temperature and Germination of Pearl Millet (Pennisetum typhoides S. & H.): III. INHIBITION OF GERMINATION BY SHORT EXPOSURE TO HIGH TEMPERATURE , 1985 .

[120]  P. Schopfer,et al.  Control of Seed Germination by Abscisic Acid : II. Effect on Embryo Water Uptake in Brassica napus L. , 1984, Plant physiology.

[121]  P. Schopfer,et al.  Effect of Water Stress, Seed Coat Restraint, and Abscisic Acid upon Different Germination Capabilities of Two Tomato Lines at Low Temperature. , 1983, Plant physiology.

[122]  D. Cantliffe,et al.  Mechanical Resistance of the Seed Coat and Endosperm during Germination of Capsicum annuum at Low Temperature. , 1983, Plant physiology.

[123]  J. L. Monteith,et al.  Time, Temperature and Germination of Pearl Millet (Pennisetum typhoides S. & H.) II. ALTERNATING TEMPERATURE , 1982 .

[124]  P. Schopfer,et al.  Control of Seed Germination by Abscisic Acid: I. Time Course of Action in Sinapis alba L. , 1979, Plant physiology.

[125]  C. M. Karssen Uptake and Effect of Abscisic Acid during Induction and Progress of Radicle Growth in Seeds of Chenopodium album , 1976 .

[126]  O. Junttila The Mechanism of Low Temperature Dormancy in Mature Seeds of Syringa Species , 1973 .

[127]  K. Thimann,et al.  THE ROLE OF THE SEED-COATS IN GERMINATION OF PHOTOSENSITIVE LETTUCE SEEDS , 1963 .

[128]  A. C. Martin,et al.  Comparative internal morphology of seeds , 1946 .

[129]  A. Basra,et al.  Hormonal interactions during seed dormancy release and germination. , 2006 .

[130]  E. Pressman,et al.  A structural study of germination in celery (Apium graveolens L.) seed with emphasis on endosperm breakdown , 2004, Planta.

[131]  Mei Wang,et al.  Modulation of germination of embryos isolated from dormant and nondormant barley grains by manipulation of endogenous abscisic acid , 2004, Planta.

[132]  David C. Tank,et al.  An update of the angiosperm phylogeny group classification for the orders and families of flowering plants : APGII , 2003 .

[133]  R. Finkelstein,et al.  Abscisic Acid Signaling in Seeds and Seedlings , 2002 .

[134]  J. Derek Bewleyl,et al.  Seed Germination and Dormancy , 2002 .

[135]  L. Copeland,et al.  Principles of Seed Science and Technology , 2001, Springer US.

[136]  M. Jullien,et al.  Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance , 2000, Planta.

[137]  K. Thompson,et al.  The functional ecology of soil seed banks. , 2000 .

[138]  M. Fenner,et al.  The role of temperature in the regulation of seed dormancy and germination. , 2000 .

[139]  T. Pons,et al.  Seed responses to light. , 2000 .

[140]  M. E. Foley,et al.  Genetic and physiological evidence for the role of gibberellic acid in the germination of dormant Avena fatua seeds. , 1998 .

[141]  H. Clay,et al.  The Influence of Embryo Restraint During Dormancy Loss and Germination of Fraxinus excelsior Seeds , 1997 .

[142]  T. D. Hong,et al.  Basic and Applied Aspects of Seed Biology , 1997, Current Plant Science and Biotechnology in Agriculture.

[143]  G. Lang,et al.  Population-based models describing seed dormancy behaviour: implications for experimental design and interpretation. , 1996 .

[144]  G. Lang,et al.  Changes in hormone sensitivity in relation to onset and breaking of sunflower embryo dormancy. , 1996 .

[145]  M. Leadbeater Increasing knowledge. , 1991, Nursing times.

[146]  C. M. Karssen,et al.  Physiological Mechanisms Involved in Seed Priming , 1989 .

[147]  R. Taylorson Recent Advances in the Development and Germination of Seeds , 1989, NATO ASI Series.

[148]  C. M. Karssen,et al.  A revision of the hormone balance theory of seed dormancy: studies on gibberellin and/or abscisic acid-deficient mutants of Arabidopsis thaliana. , 1986 .

[149]  A. Khan Gibberellins and seed development. , 1982 .

[150]  A. Khan,et al.  Changes in the Strength of Lettuce Endosperm during Germination. , 1979, Plant physiology.

[151]  Biologisches,et al.  Control of Seed Germination by Abscisic Acid' , 2022 .