A general framework for moment-based analysis of genetic data

[1]  Maria Simonsen,et al.  Statistical Inference in the Wright–Fisher Model Using Allele Frequency Data , 2016, Systematic biology.

[2]  A. Hobolth,et al.  The multivariate Wright-Fisher process with mutation: Moment-based analysis and inference using a hierarchical Beta model. , 2016, Theoretical population biology.

[3]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[4]  David J. Balding,et al.  Weight-of-Evidence for Forensic DNA Profiles: Balding/Weight-of-Evidence for Forensic DNA Profiles , 2015 .

[5]  A. Hobolth,et al.  Inference Under a Wright-Fisher Model Using an Accurate Beta Approximation , 2015, Genetics.

[6]  Nicola De Maio,et al.  PoMo: An Allele Frequency-Based Approach for Species Tree Estimation , 2015, bioRxiv.

[7]  Paul A. Jenkins,et al.  General Triallelic Frequency Spectrum Under Demographic Models with Variable Population Size , 2013, Genetics.

[8]  M. Gautier,et al.  Inferring population histories using genome-wide allele frequency data. , 2013, Molecular biology and evolution.

[9]  J. Corander,et al.  Inference on population histories by approximating infinite alleles diffusion. , 2013, Molecular biology and evolution.

[10]  Joseph K. Pickrell,et al.  Inference of Population Splits and Mixtures from Genome-Wide Allele Frequency Data , 2012, PLoS genetics.

[11]  J. Corander,et al.  Reconstructing population histories from single nucleotide polymorphism data. , 2011, Molecular biology and evolution.

[12]  A. Etheridge Some Mathematical Models from Population Genetics , 2011 .

[13]  Tzu-Tsung Wong,et al.  Parameter estimation for generalized Dirichlet distributions from the sample estimates of the first and the second moments of random variables , 2010, Comput. Stat. Data Anal..

[14]  Alan Hodgkinson,et al.  Human Triallelic Sites: Evidence for a New Mutational Mechanism? , 2010, Genetics.

[15]  R. Griffiths,et al.  Diffusion processes and coalescent trees , 2010, 1003.4650.

[16]  A. Ongaro,et al.  A new distribution on the simplex containing the Dirichlet family , 2008 .

[17]  Richard A. Nichols,et al.  A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity , 2008, Genetica.

[18]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[19]  D. Balding Weight-of-Evidence for Forensic DNA Profiles , 2005 .

[20]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[21]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[22]  W. Ewens Mathematical Population Genetics : I. Theoretical Introduction , 2004 .

[23]  Peter Donnelly,et al.  Assessing population differentiation and isolation from single‐nucleotide polymorphism data , 2002 .

[24]  D. Balding,et al.  Significant genetic correlations among Caucasians at forensic DNA loci , 1997, Heredity.

[25]  M. Nei,et al.  Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. , 1993, Molecular biology and evolution.

[26]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[27]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[28]  T. Ohta,et al.  Stepwise mutation model and distribution of allelic frequencies in a finite population. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[30]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[31]  M. Kimura RANDOM GENETIC DRIFT IN MULTI‐ALLELIC LOCUS , 1955 .

[32]  M Kimura,et al.  SOLUTION OF A PROCESS OF RANDOM GENETIC DRIFT WITH A CONTINUOUS MODEL. , 1955, Proceedings of the National Academy of Sciences of the United States of America.