Higher order active contours and their application to the detection of line networks in satellite imagery.

We present a novel method for the incorporation of shape information into active contour models, and apply it to the extraction of line networks (e.g. road, water) from satellite imagery. The method is based on a new class of contour energies. These energies are quadratic on the space of one-chains in the image, as opposed to classical energies, which are linear. They can be expressed as double integrals on the contour, and thus incorporate non-trivial interactions between different contour points. The new energies describe families of contours that share complex geometric properties, without making reference to any particular shape. Networks fall into such a family, and to model them we make a particular choice of quadratic energy whose minima are reticulated. To optimize the energies, we use a level set approach. The forces derived from the new energies are non-local however, thus necessitating an extension of standard level set methods. Promising experimental results are obtained using real images.

[1]  Josiane Zerubia,et al.  A Comparative Study of Point Processes for Line Network Extraction in Remote Sensing , 2002 .

[2]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[3]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[4]  O. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2002, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[5]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[6]  Chi-Wang Shu,et al.  Geometric shock-capturing ENO schemes for subpixel interpolation, computation, and curve evolution , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[7]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[8]  D. Cremers,et al.  Diffusion-snakes: combining statistical shape knowledge and image information in a variational framework , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[9]  M. A. Serendero Extraction d'informations symboliques en imagerie SPOT : réseaux de communication et agglomérations , 1989 .

[10]  David B. Cooper,et al.  Automatic Finding of Main Roads in Aerial Images by Using Geometric-Stochastic Models and Estimation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Nikos Paragios,et al.  Shape Priors for Level Set Representations , 2002, ECCV.

[12]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[13]  Alan L. Yuille,et al.  Bayesian A* Tree Search with Expected O(N) Convergence Rates for Road Tracking , 1999, EMMCVPR.

[14]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[15]  Ian H. Jermyn,et al.  Globally Optimal Regions and Boundaries as Minimum Ratio Weight Cycles , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[17]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Gábor Székely,et al.  Ziplock Snakes , 1997, International Journal of Computer Vision.

[19]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[20]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[21]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[22]  Martin A. Fischler,et al.  Detection of roads and linear structures in low-resolution aerial imagery using a multisource knowledge integration technique☆ , 1981 .

[23]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[24]  Rachid Deriche,et al.  Geodesic Active Regions: A New Framework to Deal with Frame Partition Problems in Computer Vision , 2002, J. Vis. Commun. Image Represent..

[25]  Ivan Laptev,et al.  Automatic extraction of roads from aerial images based on scale space and snakes , 2000, Machine Vision and Applications.

[26]  Mark Sussman,et al.  An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..

[27]  Ian H. Jermyn,et al.  Étude d'une nouvelle classe de contours actifs pour la détection de routes dans des images de télédétection , 2003 .

[28]  Isabelle Couloigner Reconnaissance de formes dans des images de télédétection du milieu urbain. (Pattern recognition from remotely-sensed images of urban areas) , 1998 .

[29]  Yunmei Chen,et al.  On the incorporation of shape priors into geometric active contours , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[30]  Jean-Francois Mangin,et al.  Detection of linear features in SAR images: application to road network extraction , 1998, IEEE Trans. Geosci. Remote. Sens..

[31]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[32]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[33]  Ian H. Jermyn,et al.  ON BAYESIAN ESTIMATION IN MANIFOLDS , 2002 .

[34]  Donald Geman,et al.  An Active Testing Model for Tracking Roads in Satellite Images , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Michel Barlaud,et al.  DREAM2S: Deformable Regions Driven by an Eulerian Accurate Minimization Method for Image and Video Segmentation , 2002, International Journal of Computer Vision.

[36]  Pascal Fua,et al.  Model driven edge detection , 1990, Machine Vision and Applications.

[37]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.