Subsolidus phase equilibria in the La2O3–Fe2O3–Sb2O5 system and characterization of layered ternary oxide LaFe0.5Sb1.5O6

[1]  P. Maggard,et al.  Flux-mediated crystal growth of metal oxides: synthetic tunability of particle morphologies, sizes, and surface features for photocatalysis research , 2015 .

[2]  C. Koo,et al.  New phase of MnSb2O6 prepared by ion exchange: structural, magnetic, and thermodynamic properties. , 2015, Inorganic chemistry.

[3]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[4]  O. G. Éllert,et al.  Subsolidus phase equilibria and magnetic characterization of the pyrochlore in the Bi2O3–Fe2O3–Sb2Ox system , 2013 .

[5]  J. Attfield,et al.  Oxygen miscibility gap and spin glass formation in the pyrochlore Lu2Mo2O7 , 2013 .

[6]  R. L. Moreira,et al.  Crystal structure of fluorite-related Ln3SbO7 (Ln¼La-Dy) ceramics studied by synchrotron X-ray diffraction and Raman scattering , 2013 .

[7]  F. Fabrizi,et al.  MnSb2O6: a polar magnet with a chiral crystal structure. , 2013, Physical review letters.

[8]  J. Soares,et al.  Structural and thermal evolution studies of LaSbO4 ceramics prepared by solid-state reaction method , 2013 .

[9]  Neha Bhardwaj,et al.  Single step hydrothermal based synthesis of M(II)Sb2O6 (M  =  Cd and Zn) type antimonates and their photocatalytic properties , 2013, Bulletin of Materials Science.

[10]  J. Marco,et al.  Structural and magnetic characterisation of the pyrochlores Bi2−xFex(FeSb)O7, (x=0.1, 0.2, 0.3), Nd1.8Fe0.2(FeSb)O7 and Pr2(FeSb)O7 , 2013 .

[11]  T. Kolodiazhnyi,et al.  Pyrochlore Range from Bi2O3–Fe2O3–TeO3 System for LTCC and Photocatalysis and the Crystal Structure of New Bi3(Fe0.56Te0.44)3O11 , 2012 .

[12]  K. Page,et al.  New (Bi1.88Fe0.12)(Fe1.42Te0.58)O6.87 Pyrochlore with Spin-Glass Transition , 2011 .

[13]  Erwin M. Sabio,et al.  Evolution of Physical and Photocatalytic Properties in the Layered Titanates A2Ti4O9 (A = K, H) and in Nanosheets Derived by Chemical Exfoliation† , 2010 .

[14]  Y. Hinatsu,et al.  Magnetic properties of orthorhombic fluorite-related oxides Ln3SbO7 (Ln=rare earths) , 2009 .

[15]  J. Berry,et al.  Diamagnetic Corrections and Pascal's Constants , 2008 .

[16]  Z. Hussain,et al.  Polaron coherence condensation as the mechanism for colossal magnetoresistance in layered manganites , 2007, 0711.1732.

[17]  M. Anpo,et al.  Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production , 2007 .

[18]  B. Jena,et al.  Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[19]  X. Lin,et al.  A novel photocatalyst PbSb2O6 for degradation of methylene blue , 2006 .

[20]  Shuhong Yu,et al.  Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property. , 2006, The journal of physical chemistry. B.

[21]  Y. Maeno,et al.  Spin Disorder on a Triangular Lattice , 2005, Science.

[22]  Alex Gittens,et al.  Synthesis, structure and characterization of two new antimony oxides–LaSb3O9and LaSb5O12: Formation of LaSb5O12from the reaction of LaSb3O9with Sb2O3 , 2004 .

[23]  H. Mizoguchi,et al.  Electronic Structure Studies of Main Group Oxides Possessing Edge-Sharing Octahedra: Implications for the Design of Transparent Conducting Oxides , 2004 .

[24]  R. Cabella,et al.  Formation and decomposition of the rutile-type compound FeSbO4 , 2002 .

[25]  N. Saito,et al.  Photocatalytic water decomposition by RuO2-loaded antimonates, M2Sb2O7 (M=Ca, Sr), CaSb2O6 and NaSbO3, with d10 configuration , 2002 .

[26]  M. Gingras,et al.  Spin Ice State in Frustrated Magnetic Pyrochlore Materials , 2001, Science.

[27]  John E. Greedan,et al.  Geometrically frustrated magnetic materials , 2001 .

[28]  R. Moessner,et al.  LOW-TEMPERATURE PROPERTIES OF CLASSICAL GEOMETRICALLY FRUSTRATED ANTIFERROMAGNETS , 1998, cond-mat/9807384.

[29]  Arthur P. Ramirez,et al.  Strongly Geometrically Frustrated Magnets , 1994 .

[30]  R. Young,et al.  X‐ray Rietveld structure refinement of Ca, Sr and Ba meta‐antimonates , 1994 .

[31]  M. Greenblatt,et al.  The Crystal Structure and Ionic Conductivity of the Ilmenite Polymorph of NaSbO3 , 1994 .

[32]  J. Ruitenbeek,et al.  Superconductivity in (Pb, Bi)2Sr2−xLaxCu2O6+δ , 1989 .

[33]  J. N. Reimers,et al.  Crystal structure and magnetism in MnSb2O6: Incommensurate long-range order , 1989 .

[34]  A. Castro,et al.  Refinement of Structural Parameters for Polycrystalline CdSb2O6: A Comparison of Two Methods , 1988, Powder Diffraction.

[35]  R. J. Hill,et al.  Structure of PbSb2O6 and its relationship to the crystal chemistry of PbO2 in antimonial lead-acid batteries , 1987 .

[36]  H. Scott Synthesis and crystal structures of the manganous antimonates Mn2Sb2O7 and MnSb2O6 , 1987 .

[37]  G. Blasse,et al.  Compounds with lead antimonate structure , 1970 .

[38]  R. Drago Physical methods in inorganic chemistry , 1965 .

[39]  V. Moruzzi,et al.  Phase Equilibria in the System La2O3—Iron Oxide in Air , 1960 .