Design of an active site towards optimal electrocatalysis: overlayers, surface alloys and near-surface alloys of Cu/Pt(111).

Therefore,thedesign of the appropriate active site is crucial to obtain highcatalytic activity, especially where multi-functionality isneeded. However, the control of a given surface on anatom-by-atom basis is particularly challenging.The electrochemical oxidation of CO is the prototypicalbifunctional reaction.

[1]  T. Lim,et al.  Enhanced stability and activity of Pt-Y alloy catalysts for electrocatalytic oxygen reduction. , 2011, Chemical communications.

[2]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[3]  Ib Chorkendorff,et al.  Adsorption-driven surface segregation of the less reactive alloy component. , 2009, Journal of the American Chemical Society.

[4]  Hubert A. Gasteiger,et al.  Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. , 2011, Journal of the American Chemical Society.

[5]  M. Watanabe,et al.  Electrochemical quartz crystal microbalance analysis of the CO oxidation reaction at Pt alloy electrodes , 2011 .

[6]  Jingguang G. Chen,et al.  Correlating hydrogenation activity with binding energies of hydrogen and cyclohexene on M/Pt(111) (M = Fe, Co, Ni, Cu) bimetallic surfaces , 2008 .

[7]  Manos Mavrikakis,et al.  Reactivity descriptors for direct methanol fuel cell anode catalysts , 2008 .

[8]  Rees B Rankin,et al.  Unique electrochemical adsorption properties of Pt-skin surfaces. , 2012, Angewandte Chemie.

[9]  Thomas Bligaard,et al.  Trends in the catalytic CO oxidation activity of nanoparticles. , 2008, Angewandte Chemie.

[10]  Thomas F. Jaramillo,et al.  Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts , 2007, Science.

[11]  Hubert A. Gasteiger,et al.  Platinum-Alloy Cathode Catalyst Degradation in Proton Exchange Membrane Fuel Cells: Nanometer-Scale Compositional and Morphological Changes , 2010 .

[12]  V. Climent,et al.  New understanding of the nature of OH adsorption on Pt(111) electrodes , 2007 .

[13]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[14]  R. Behm,et al.  Pt promotion and spill-over processes during deposition and desorption of upd-H(ad) and OH(ad) on Pt(x)Ru(1-x)/Ru(0001) surface alloys. , 2010, Physical chemistry chemical physics : PCCP.

[15]  P. Ross,et al.  Structural effects during CO adsorption on Pt-bimetallic surfaces. II. The Pt(111) electrode , 2000 .

[16]  Ib Chorkendorff,et al.  The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. , 2012, Angewandte Chemie.

[17]  T. Lim,et al.  Promoting effects of La for improved oxygen reduction activity and high stability of Pt on Pt–La alloy electrodes , 2012 .

[18]  M. Koper,et al.  Mechanisms of Carbon Monoxide and Methanol Oxidation at Single-crystal Electrodes , 2007 .

[19]  Thomas Bligaard,et al.  Trends in the exchange current for hydrogen evolution , 2005 .

[20]  Ib Chorkendorff,et al.  Understanding the electrocatalysis of oxygen reduction on platinum and its alloys , 2012 .

[21]  Junliang Zhang,et al.  Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. , 2005, Angewandte Chemie.

[22]  Michael F Toney,et al.  Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. , 2010, Nature chemistry.

[23]  I. Chorkendorff,et al.  Identical locations transmission electron microscopy study of Pt/C electrocatalyst degradation durin , 2011 .

[24]  J. Greeley,et al.  Unique activity of platinum adislands in the CO electrooxidation reaction. , 2008, Journal of the American Chemical Society.

[25]  M. Mavrikakis,et al.  Near-surface alloys for hydrogen fuel cell applications , 2006 .

[26]  D. Kolb,et al.  Gezielte Veränderung der katalytischen Aktivität einer Palladium‐Monoschicht durch Dehnung oder Kompression , 2005 .

[27]  Jens K. Nørskov,et al.  Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction , 2009 .

[28]  D. Kolb,et al.  Tuning reaction rates by lateral strain in a palladium monolayer. , 2005, Angewandte Chemie.

[29]  Ib Chorkendorff,et al.  The Pt(111)/electrolyte interface under oxygen reduction reaction conditions: an electrochemical impedance spectroscopy study. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[30]  Ib Chorkendorff,et al.  Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. , 2011, Journal of the American Chemical Society.

[31]  Andrew A. Peterson,et al.  How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels , 2010 .

[32]  M. Mavrikakis,et al.  A Cu/Pt near-surface alloy for water-gas shift catalysis. , 2007, Journal of the American Chemical Society.

[33]  Jingguang G. Chen,et al.  Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. , 2010, Angewandte Chemie.

[34]  M. Arenz,et al.  Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation. , 2009, Journal of the American Chemical Society.

[35]  M. Arenz,et al.  CO surface electrochemistry on Pt-nanoparticles: A selective review , 2005 .

[36]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[37]  B. Koel,et al.  Role of surface iron in enhanced activity for the oxygen reduction reaction on a Pd3Fe(111) single-crystal alloy. , 2011, Angewandte Chemie.