VaTEST. II. Statistical Validation of 11 TESS-detected Exoplanets Orbiting K-type Stars

NASA’s Transiting Exoplanet Survey Satellite (TESS) is an all-sky survey mission designed to find transiting exoplanets orbiting nearby bright stars. It has identified more than 329 transiting exoplanets, and almost 6000 candidates remain unvalidated. In this manuscript, we discuss the findings from the ongoing Validation of Transiting Exoplanets using Statistical Tools (VaTEST) project, which aims to validate new exoplanets for further characterization. We validated 11 new exoplanets by examining the light curves of 24 candidates using the LATTE and TESS-Plot tools and computing the false-positive probabilities using the statistical validation tool TRICERATOPS. These include planets suitable for atmospheric characterization using transmission spectroscopy (TOI-2194b), emission spectroscopy (TOI-3082b and TOI-5704b) and for both transmission and emission spectroscopy (TOI-672b, TOI-1694b, and TOI-2443b). Our validated planets have one super-Earth (TOI-2194b) orbiting a bright (V = 8.42 mag), metal-poor ([Fe/H] = −0.3720 ± 0.1) star, and one short-period Neptune-like planet (TOI-5704) in the hot-Neptune desert. In total, we validated one super-Earth, seven sub-Neptunes, one Neptune-like, and two sub-Saturn or super-Neptune-like exoplanets. Additionally, we identify five likely planet candidates (TOI-323, TOI-1180, TOI-2200, TOI-2408, and TOI-3913), which can be further studied to establish their planetary nature.

[1]  C. Beichman,et al.  VaTEST I: Validation of Sub-Saturn Exoplanet TOI-181b in Narrow Orbit from its Host Star , 2022, Monthly Notices of the Royal Astronomical Society.

[2]  Gregory J. Gilbert,et al.  TESS-Keck Survey. XIV. Two Giant Exoplanets from the Distant Giants Survey , 2022, The Astronomical Journal.

[3]  N. Crouzet,et al.  Observing exoplanets from Antarctica in two colours: set-up and operation of ASTEP+ , 2022, Astronomical Telescopes + Instrumentation.

[4]  J. Winn,et al.  Predicting the Exoplanet Yield of the TESS Prime and Extended Missions through Years 1–7 , 2022, 2202.03656.

[5]  D. Ciardi,et al.  Twin High-Resolution, High-Speed Imagers for the Gemini Telescopes: Instrument Description and Science Verification Results , 2021, Frontiers in Astronomy and Space Sciences.

[6]  J. Crepp,et al.  Follow-Up and Validation of K2 and TESS Planetary Systems With Keck NIRC2 Adaptive Optics Imaging , 2021, Frontiers in Astronomy and Space Sciences.

[7]  N. Law,et al.  SOAR TESS Survey. II. The Impact of Stellar Companions on Planetary Populations , 2021, The Astronomical Journal.

[8]  C. McCully,et al.  MuSCAT3: a 4-color simultaneous camera for the 2m Faulkes Telescope North , 2020 .

[9]  D. Ciardi,et al.  A Closer Look at Exoplanet Occurrence Rates: Considering the Multiplicity of Stars without Detected Planets , 2020, The Astronomical Journal.

[10]  Suzanne Aigrain,et al.  LATTE: Lightcurve Analysis Tool for Transiting Exoplanets , 2020, J. Open Source Softw..

[11]  Avi Shporer,et al.  Vetting of 384 TESS Objects of Interest with TRICERATOPS and Statistical Validation of 12 Planet Candidates , 2020, The Astronomical Journal.

[12]  N. Law,et al.  SOAR TESS Survey. I. Sculpting of TESS Planetary Systems by Stellar Companions , 2019, The Astronomical Journal.

[13]  N. Crouzet,et al.  Multicolour photometry for exoplanet candidate validation , 2019, Astronomy & Astrophysics.

[14]  Keivan G. Stassun,et al.  The Revised TESS Input Catalog and Candidate Target List , 2019, The Astronomical Journal.

[15]  Jessica R. Lu,et al.  The Galactic Center: An Improved Astrometric Reference Frame for Stellar Orbits around the Supermassive Black Hole , 2019, The Astrophysical Journal.

[16]  Fergal Mullally,et al.  Discovery and Vetting of Exoplanets. I. Benchmarking K2 Vetting Tools , 2019, The Astronomical Journal.

[17]  M. Hippke,et al.  Optimized transit detection algorithm to search for periodic transits of small planets , 2019, Astronomy & Astrophysics.

[18]  Néstor Espinoza,et al.  Juliet: Transiting and non-transiting exoplanetary systems modelling tool , 2018 .

[19]  Jessie L. Dotson,et al.  Lightkurve: Kepler and TESS time series analysis in Python , 2018 .

[20]  Mark Bowman,et al.  Real-time processing of the imaging data from the network of Las Cumbres Observatory Telescopes using BANZAI , 2018, Astronomical Telescopes + Instrumentation.

[21]  Robert T. Zellem,et al.  A Framework for Prioritizing the TESS Planetary Candidates Most Amenable to Atmospheric Characterization , 2018, Publications of the Astronomical Society of the Pacific.

[22]  Keivan G. Stassun,et al.  The TESS Input Catalog and Candidate Target List , 2017, The Astronomical Journal.

[23]  A. Dupree,et al.  THE KEPLER FOLLOW-UP OBSERVATION PROGRAM. I. A CATALOG OF COMPANIONS TO KEPLER STARS FROM HIGH-RESOLUTION IMAGING , 2016, 1612.02392.

[24]  Mauro Barbieri,et al.  Transiting planet candidates with ASTEP 400 at Dome C, Antarctica , 2016 .

[25]  D. Kipping,et al.  PROBABILISTIC FORECASTING OF THE MASSES AND RADII OF OTHER WORLDS , 2016, 1603.08614.

[26]  Keivan G. Stassun,et al.  ASTROIMAGEJ: IMAGE PROCESSING AND PHOTOMETRIC EXTRACTION FOR ULTRA-PRECISE ASTRONOMICAL LIGHT CURVES , 2016, 1601.02622.

[27]  N. Crouzet,et al.  Thermalizing a telescope in Antarctica – analysis of ASTEP observations , 2015, 1506.06009.

[28]  Timothy D. Morton,et al.  VESPA: False positive probabilities calculator , 2015 .

[29]  Donald Gavel,et al.  ShaneAO: wide science spectrum adaptive optics system for the Lick Observatory , 2014, Astronomical Telescopes and Instrumentation.

[30]  Donald Gavel,et al.  Commissioning ShARCS: the Shane adaptive optics infrared camera-spectrograph for the Lick Observatory Shane 3-m telescope , 2014, Astronomical Telescopes and Instrumentation.

[31]  L. Buchhave,et al.  Three regimes of extrasolar planet radius inferred from host star metallicities , 2014, Nature.

[32]  France,et al.  PASTIS: Bayesian extrasolar planet validation. I. General framework, models, and performance , 2014, 1403.6725.

[33]  Eric L. N. Jensen,et al.  Tapir: A web interface for transit/eclipse observability , 2013 .

[34]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[35]  Peter Tenenbaum,et al.  Identification of Background False Positives from Kepler Data , 2013, 1303.0052.

[36]  A. Cameron Extrasolar planets: Astrophysical false positives , 2012, Nature.

[37]  Donald Gavel,et al.  ShaneAO: an enhanced adaptive optics and IR imaging system for the Lick Observatory 3-meter telescope , 2012, Other Conferences.

[38]  J. B. Laird,et al.  An abundance of small exoplanets around stars with a wide range of metallicities , 2012, Nature.

[39]  D. Ciardi,et al.  SPECKLE CAMERA OBSERVATIONS FOR THE NASA KEPLER MISSION FOLLOW-UP PROGRAM , 2011 .

[40]  J. Vink,et al.  The masses, and the mass discrepancy of O-type stars , 2010, 1010.2204.

[41]  Andrei Tokovinin,et al.  SPECKLE INTERFEROMETRY AT THE BLANCO AND SOAR TELESCOPES IN 2008 AND 2009 , 2009, 0911.5718.

[42]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[43]  Roberto Baena Gallé,et al.  OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. I. INSTRUMENT DESCRIPTION AND FIRST RESULTS , 2009 .

[44]  S. Jha,et al.  Testing Blend Scenarios for Extrasolar Transiting Planet Candidates. II. OGLE-TR-56 , 2004, astro-ph/0410157.

[45]  Timothy M. Brown,et al.  Expected Detection and False Alarm Rates for Transiting Jovian Planets , 2003, astro-ph/0307256.

[46]  Gerard Rousset,et al.  Status of the VLT Nasmyth adaptive optics system (NAOS) , 2000, Astronomical Telescopes and Instrumentation.

[47]  D. S. Acton,et al.  First Light Adaptive Optics Images from the Keck II Telescope: A New Era of High Angular Resolution Imagery , 2000 .

[48]  Peter Bizenberger,et al.  CONICA: the high-resolution near-infrared camera for the ESO VLT , 1998, Astronomical Telescopes and Instrumentation.

[49]  H. C. Stempels,et al.  FIES: The high-resolution Fiber-fed Echelle Spectrograph at the Nordic Optical Telescope , 2014 .

[50]  Jonathan C. McDowell,et al.  James Webb Space Telescope , 2004 .

[51]  Bernhard R. Brandl,et al.  PHARO: A Near‐Infrared Camera for the Palomar Adaptive Optics System , 2001 .