Can the theory of gradient liquid chromatography be useful in solving practical problems?

Advances in the theory of gradient liquid chromatography and their practical impacts are reviewed. Theoretical models describing retention in reversed-phase, normal-phase and ion-exchange modes are compared. Main attention is focused on practically useful models described by two- or three-parameter equations fitting the experimental data in the range of mobile phase composition utilized for sample migration during gradient elution. The applications of theory for gradient method development, optimization and transfer are addressed. The origins and possibilities for overcoming possible pitfalls are discussed, including the effects of the instrumental dwell volume, uptake of mobile phase components on the column and size of the sample molecules. Special attention is focused on gradient separations of large molecules.

[1]  B. Olsen Hydrophilic interaction chromatography using amino and silica columns for the determination of polar pharmaceuticals and impurities. , 2001, Journal of chromatography. A.

[2]  P. Carr,et al.  A study of the critical criteria for analyte stability in high-temperature liquid chromatography. , 2002, Analytical chemistry.

[3]  R. Kaliszan,et al.  Lipophilicity and pKa estimates from gradient high-performance liquid chromatography. , 2002, Journal of chromatography. A.

[4]  Georges Guiochon,et al.  Probability distributions of the number of chromatographically resolved peaks and resolvable components in mixtures , 1986 .

[5]  J. J. Kirkland,et al.  Optimization of mobile phases for multisolvent gradient elution liquid chromatography , 1983 .

[6]  D. Wetlaufer,et al.  Relationship between isocratic and gradient retention times in the high-performance ion-exchange chromatography of proteins. Theory and experiment. , 1986, Journal of chromatography.

[7]  J. Fritz,et al.  Detection of metal ions by liquid chromatographic separation of their 1,3-dimethyl-4-acetyl-2-pyrazolin-5-one chelates , 1988 .

[8]  E. C. Freiling Ion Exchange as a Separations Method. IX. Gradient Elution Theory1 , 1955 .

[9]  Shuichi Yamamoto,et al.  Theoretical background of short chromatographic layers. Optimization of gradient elution in short columns. , 2005, Journal of chromatography. A.

[10]  J. Dolan,et al.  Maintaining fixed band spacing when changing column dimensions in gradient elution. , 1998, Journal of chromatography. A.

[11]  J. J. Kirkland,et al.  Classification of multisolvent mobile phase systems in liquid chromatography , 1982 .

[12]  P. Jandera,et al.  Separation of aromatic sulphonic acid dye intermediates by high-performance liquid chromatography and capillary zone electrophoresis , 1996 .

[13]  P. Jandera,et al.  Chromatographic behaviour of low molar-mass polyesters in normal-phase high-performance liquid chromatography , 2000 .

[14]  B. Karger,et al.  Hydrophobic effects in reversed-phase liquid chromatography , 1976 .

[15]  H. Billiet,et al.  Use of the solubility parameter for predicting selectivity and retention in chromatography , 1976 .

[16]  L. Snyder,et al.  Combined use of temperature and solvent strength in reversed-phase gradient elution. IV. Selectivity for neutral (non-ionized) samples as a function of sample type and other separation conditions , 1996 .

[17]  C. Lochmuller,et al.  Isocratic elution of high molecular weight monodisperse polystyrenes , 1989 .

[18]  L. Blomberg,et al.  Controlling the retention in capillary LC with solvents, temperature, and electric fields. , 2004, Journal of Separation Science.

[19]  T. Kowalska,et al.  Adsorption/partition model of liquid chromatography for chemically bonded stationary phases of the aliphatic cyano, reversed-phase C8 and reversed-phase C18 types. , 2000, Journal of chromatography. A.

[20]  P. Jandera,et al.  Isocratic and gradient-elution liquid chromatography of styrene oligomers on silica gel , 1986 .

[21]  J. Meek,et al.  Factors affecting retention and resolution of peptides in high-performance liquid chromatography , 1981 .

[22]  P. Jandera,et al.  Comparison of column properties in reversed-phase chromatography: monolithic, cholesterolic and mixed bonded stationary phases , 2005 .

[23]  K. Valko Separation Methods in Drug Synthesis and Purification , 2000 .

[24]  P. Jandera COMPARISON OF REVERSED-PHASE AND NORMAL-PHASE COLUMN LIQUID CHROMATOGRAPHIC TECHNIQUES FOR THE SEPARATION OF LOW AND HIGH MOLECULAR WEIGHT COMPOUNDS , 2002 .

[25]  J. W. Dolan,et al.  Gradient elution in high-performance liquid chromatography , 1979 .

[26]  P. Nikitas,et al.  New approach to linear gradient elution used for optimisation in reversed-phase liquid chromatography. , 2005, Journal of chromatography. A.

[27]  L. Snyder,et al.  Theoretical basis for systematic optimization of mobile phase selectivity in liquid-solid chromatography , 1981 .

[28]  Y. Baba,et al.  Effect of column temperature on high-performance liquid chromatographic behaviour of inorganic polyphosphates , 1985 .

[29]  P. Jandera,et al.  Comparison of retention behaviour of aromatic sulphonic acids in reversed-phase systems with mobile phases containing ion-pairing ions and in systems with solutions of inorganic salts as the mobile phases , 1983 .

[30]  M. Patthy Gradient elution with shorter equilibration times in reversed-phase ion-pair chromatography , 1992 .

[31]  P. Jandera,et al.  Solvent and temperature gradients in separation of synthetic oxyethylene-oxypropylene block (co)polymers using high-temperature liquid chromatography. , 2006, Journal of separation science.

[32]  M. Tavares,et al.  Systematic approach to the separation of mono- and hydroxycarboxylic acids in environmental samples by ion chromatography and capillary electrophoresis , 1998 .

[33]  P. Jandera,et al.  Predictive Optimization of the Separation of Phenylurea Pesticides using Ternary Mobile Phase Gradients in Reversed-Phase HPLC , 1991 .

[34]  P. Jandera,et al.  Theoretical Aspects of Gradient Reversed-Phase High Performance Liquid Chromatography of Styrene – Butylacrylate Block Copolymers , 2004 .

[35]  P. Jandera,et al.  Comparison of various stationary phases for normal-phase high-performance liquid chromatography of ethoxylated alkylphenols , 1990 .

[36]  L. Mondello,et al.  Off-line coupling of non-aqueous reversed-phase and silver ion high-performance liquid chromatography-mass spectrometry for the characterization of rice oil triacylglycerol positional isomers. , 2004, Journal of chromatography. A.

[37]  C. Horváth,et al.  Theory for electrostatic interaction chromatography of proteins. , 1991, Analytical chemistry.

[38]  J. Gant,et al.  Vizualization of protein retention and migration in reversed-phase liquid chromatography , 1985 .

[39]  P. Jandera Gradient elution in normal-phase high-performance liquid chromatographic systems. , 2002, Journal of chromatography. A.

[40]  R. R. Walters,et al.  Protein separations on reversed-phase high-performance liquid chromatography minicolumns. , 1984, Journal of chromatography.

[41]  R. Cela,et al.  The preopt package for pre-optimization of gradient elutions in high-performance liquid chromatography , 1986 .

[42]  H. Issaq A century of separation science , 2002 .

[43]  L. Snyder,et al.  Selectivity differences for C18 and C8 reversed-phase columns as a function of temperature and gradient steepness. I. Optimizing selectivity and resolution. , 2000, Journal of chromatography. A.

[44]  Method development in high-performance liquid chromatography using retention mapping and experimental design techniques , 1989 .

[45]  R. A. Shalliker,et al.  Comparison of isocratic and gradient elution reversed-phase behaviour of high-molecular-mass polystyrenes in dichloromethane and acetonitrile , 1994 .

[46]  F. Antia,et al.  Dependence of retention on the organic modifier concentration and multicomponent adsorption behavior in reversed-phase chromatography. , 1991, Journal of chromatography.

[47]  J W Dolan,et al.  Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time II. Two-run assay procedures. , 1999, Journal of chromatography. A.

[48]  Imre Molnar,et al.  Computerized design of separation strategies by reversed-phase liquid chromatography: development of DryLab software. , 2002, Journal of chromatography. A.

[49]  P. Nikitas,et al.  Expressions of the fundamental equation of gradient elution and a numerical solution of these equations under any gradient profile. , 2005, Analytical chemistry.

[50]  D. Knapp,et al.  Plastic microchip liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometry using monolithic columns. , 2006, Journal of chromatography. A.

[51]  J. Fekete,et al.  Distribution equilibria of solvent components in reversed-phase liquid chromatographic columns and relationship with the mobile phase volume , 1981 .

[52]  P. Jandera Methods for characterization of selectivity in reversed-phase liquid chromatography : IV. Retention behaviour of oligomeric series , 1986 .

[53]  H. Engelhardt High performance liquid chromatography , 1997 .

[54]  R. Kaliszan,et al.  Comparative characteristics of HPLC columns based on quantitative structure-retention relationships (QSRR) and hydrophobic-subtraction model. , 2005, Journal of chromatography. A.

[55]  L. Snyder Principles of adsorption chromatography , 1968 .

[56]  E. Soczewiński Solvent composition effects in thin-layer chromatography systems of the type silica gel-electron donor solvent , 1969 .

[57]  D. Martire,et al.  Molecular Theory of Liquid Adsorption Chromatography , 1980 .

[58]  P. Jandera,et al.  Gradient elution in liquid chromatography : VII. Comparison of different mobile phases in adsorption chromatography , 1975 .

[59]  R. Cela,et al.  Automated off-line optimisation of programmed elutions in reversed-phase high-performance liquid chromatography using ternary solvent mixtures , 2003 .

[60]  P. Jandera,et al.  Gradient elution in liquid chromatography : II. Retention characteristics (retention volume, band width, resolution, plate number) in solvent-programmed chromatography — theoretical considerations , 1974 .

[61]  M. Khaledi,et al.  Gradient elution in micellar liquid chromatography. II. Organic modifier gradients. , 1994, Journal of chromatography. A.

[62]  P. Jandera,et al.  Phase System Selectivity and Peak Capacity in Liquid Column Chromatography – the Impact on Two-Dimensional Separations , 2004 .

[63]  M. Holčapek,et al.  Retention Behavior of Oligomers and Cooligomers in Reversed-phase and in Normal-phase Interactive Liquid Chromatographic Systems , 2001 .

[64]  E. Soczewiński,et al.  The relation between the composition of certain ternary two-phase solvent systems and RM values , 1962 .

[65]  R. Scott,et al.  Solute interactions with the mobile and stationary phases in liquid—solid chromatography , 1975 .

[66]  R. Cela,et al.  PREOPT-W: Off-line Optimization of Binary Gradient Separations in HPLC By Simulation - IV. Phase 3 , 1996, Comput. Chem..

[67]  P. Jandera Predictive calculation methods for optimization of gradient elution using binary and ternary solvent gradients , 1989 .

[68]  P. Jandera,et al.  Gradient elution in liquid chromatography : VIII. Selection of the optimal composition of the mobile phase in liquid chromatography under isocratic conditions , 1978 .

[69]  T. Araki,et al.  Stationary phase effects in reversed-phase liquid chromatography , 1993 .

[70]  F. Regnier,et al.  Retention model for high-performance ion-exchange chromatography☆ , 1983 .

[71]  R. A. Shalliker,et al.  Isolation of the active constituents in natural materials by 'heart-cutting' isocratic reversed-phase two-dimensional liquid chromatography. , 2004, Journal of chromatography. A.

[72]  Q. Bai,et al.  The temperature convergence of biopolymers in reversed-phase liquid chromatography , 2001 .

[73]  H. Mcnair,et al.  Temperature Programmed Microbore HPLC—Part I , 1984 .

[74]  P. Jandera,et al.  Stationary-phase effects in gradient high-performance liquid chromatography. , 2004, Journal of chromatography. A.

[75]  V. R. Meyer Example of gradient elution in normal-phase liquid chromatography , 1997 .

[76]  Y. Liu,et al.  Recursion equations in predicting band width under gradient elution. , 2004, Journal of chromatography. A.

[77]  Tatsunari Yoshida,et al.  Prediction of retention times in ion-exchange chromatography , 1989 .

[78]  S. C. Churms Recent developments in the chromatographic analysis of carbohydrates. , 1990 .

[79]  H. Billiet,et al.  Influence of organic modifiers on the rentention behaviour in reversed-phase liquid chromatography and its consequences for gradient elution , 1979 .

[80]  P. Jandera,et al.  Gradient elution in liquid chromatography : I. The influence of the composition of the mobile phase on the capacity ratio (retention volume, band width, and resolution) in isocratic elution — theoretical considerations , 1974 .

[81]  J. Giddings Maximum number of components resolvable by gel filtration and other elution chromatographic methods , 1967 .

[82]  P. Jandera,et al.  Gradient elution in liquid chromatography: XII. Optimization of conditions for gradient elution , 1980 .

[83]  J. J. Destefano,et al.  Normal-phase high-performance liquid chromatography with highly purified porous silica microspheres , 1993 .

[84]  M. Hearn,et al.  High-performance liquid chromatography of amino acids, peptides and proteins : LXXXIX. The influence of different displacer salts on the retention properties of proteins separated by gradient anion-exchange chromatography , 1989 .

[85]  B. Karger,et al.  Distribution phenomena of mobile-phase components and determination of dead volume in reversed-phase liquid chromatography , 1980 .

[86]  E. Bosch,et al.  Influence of mobile phase acid-base equilibria on the chromatographic behaviour of protolytic compounds. , 2002, Journal of chromatography. A.

[87]  H. Billiet,et al.  Description of solute retention over the full range of mobile phase compositions in reversed-phase liquid chromatography , 1983 .

[88]  Joe M. Davis,et al.  Statistical theory of component overlap in multicomponent chromatograms , 1983 .

[89]  E. Soczewiński,et al.  A simple molecular model of adsorption chromatography , 1978 .

[90]  L. Snyder,et al.  Peak compression in reversed-phase gradient elution. , 2006, Journal of chromatography. A.

[91]  S. Heinisch,et al.  A computer routine for the selection and optimization of multisolvent mobile phase systems in reversed-phase liquid chromatography , 1991 .

[92]  L. Snyder Role of the solvent in liquid-solid chromatography. Review , 1974 .

[93]  D. H. Everett Thermodynamics of adsorption from solution. Part 1.—Perfect systems , 1964 .

[94]  C. Horváth,et al.  High-Performance Liquid Chromatography: Advances and Perspectives , 1980 .

[95]  J. Dolan,et al.  Initial experiments in high-performance liquid chromatographic method development I. Use of a starting gradient run , 1996 .

[96]  H. Poppe,et al.  Peak width in solvent-programmed chromatography , 1981 .

[97]  M. Hearn,et al.  High-performance liquid chromatography of amino acids, peprtides and proteins , 1987 .

[98]  H. Zou,et al.  Effect of organic modifier concentration on retention in reversed-phase ion-pair liquid chromatography , 1991 .

[99]  J. Bounine,et al.  Adsorption liquid chromatography on columns , 1979 .

[100]  L. Snyder,et al.  Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time I. Peak capacity limitations. , 1999, Journal of chromatography. A.

[101]  A. Siouffi,et al.  Optimization methods in chromatography and capillary electrophoresis. , 2000, Journal of chromatography. A.

[102]  L. Snyder,et al.  Solvent strength of multicomponent mobile phases in liquid—solid chromatography : Mixtures of three or more solvents , 1981 .

[103]  M. Jaroniec,et al.  Liquid adsorption chromatography with mixed mobile phases : III. Influence of molecular areas of solvents and chromatographed substances on the capacity ratio , 1979 .

[104]  P. Jandera Predictive optimization of gradient-elution liquid chromatography , 1989 .

[105]  L. Snyder,et al.  Optimized Solvent Programming for Separations of Complex Samples by Liquid-Solid Adsorption Chromatography in Columns , 1969 .

[106]  P. Jandera,et al.  Description and prediction of retention in normal-phase high-performance liquid chromatography with binary and ternary mobile phase. , 1997, Journal of Chromatography A.

[107]  P. Kavanagh,et al.  Capacity factors and peak widths in the gradient elution reversed phase separation of high molar mass polystyrenes , 1997 .

[108]  B. Lavine,et al.  Enhancement of selectivity in reversed-phase liquid chromatography. , 2002, Journal of chromatography. A.

[109]  G. Guiochon,et al.  Effects of the gradient profile on the production rate in reversed-phase gradient elution overloaded chromatography , 1997 .

[110]  Michel Martin On the potential of two- and multi-dimensional separation systems , 1995 .

[111]  L. Snyder,et al.  Mechanism of solute retention in liquid—solid chromatography and the role of the mobile phase in affecting separation , 1980 .

[112]  M. Elomaa,et al.  Retention Behavior of Poly(Methyl Methacrylate) and Poly(Ethylene Glycol) in Reversed-Phase Liquid Chromatography , 1995 .

[113]  M. Bohmer,et al.  Lattice models for the description of partitioning/adsorption and retention in reversed-phase liquid chromatography, including surface and shape effects , 1993 .

[114]  H. Billiet,et al.  Gradient selection in reversed-phase liquid chromatography , 1978 .

[115]  E. Bosch,et al.  Retention of ionizable compounds on HPLC. 12. The properties of liquid chromatography buffers in acetonitrile-water mobile phases that influence HPLC retention. , 2002, Analytical chemistry.

[116]  V. Potter,et al.  Anion exchange chromatography of acids of the citric acid cycle. , 1952, The Journal of biological chemistry.

[117]  J. Jorgenson,et al.  Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins. , 1990, Analytical chemistry.

[118]  F. Regnier,et al.  Rapid chromatofocusing of proteins. , 1982, Analytical biochemistry.

[119]  C. Horváth,et al.  Temperature programming and gradient elution in reversed-phase chromatography with packed capillary columns. , 1997, Journal of chromatography. A.

[120]  J. Foley,et al.  Sequential multimodal elution for pseudomultidimensional liquid chromatography on a single column , 1991 .

[121]  P. Jandera Simultaneous optimisation of gradient time, gradient shape and initial composition of the mobile phase in the high-performance liquid chromatography of homologous and oligomeric series , 1999 .

[122]  J. R. Torres-Lapasió,et al.  Limits of multi-linear gradient optimisation in reversed-phase liquid chromatography. , 2005, Journal of chromatography. A.

[123]  T. Greibrokk,et al.  Isoelectric point separation of proteins by capillary pH-gradient ion-exchange chromatography. , 2004, Journal of chromatography. A.

[124]  L. Snyder,et al.  Optimization model for the gradient elution separation of peptide mixtures by reversed-phase high-performance liquid chromatography , 1985 .

[125]  H. Billiet Gradient elution in column liquid chromatography : (Journal of Chromatography Library, Vol. 31), P. Jandera and J. Churáček, Elsevier, 1985. US$ 79.00/Dfl. 245.00 (xix + 510 pages) ISBN 0-444-42124-6 , 1985 .

[126]  M. R. Khan,et al.  Application of iso-selective gradient elution for the separation of selected phthalates , 1991 .

[127]  P. Schoenmakers,et al.  Comprehensive two-dimensional liquid chromatography of polymers. , 2003, Journal of chromatography. A.

[128]  L. Snyder LINEAR ELUTION ADSORPTION CHROMATOGRAPHY. VII. GRADIENT ELUTION THEORY. , 1964, Journal of chromatography.

[129]  P. Jandera Mechanism and prediction of retention of oligomers in normal-phase and reversed-phase HPLC , 1988 .

[130]  J. Giddings Generation of Variance, “Theoretical Plates,” Resolution, and Peak Capacity in Electrophoresis and Sedimentation , 1969 .

[131]  M. Ree,et al.  Characterization of polystyrene and polyisoprene by normal-phase temperature gradient interaction chromatography. , 2001, Journal of chromatography. A.

[132]  R. Cela,et al.  Objective functions in experimental and simulated chromatographic optimization , 1989 .

[133]  Y. Baba,et al.  Optimization of gradients in anion-exchange separations of oligonucleotides using computer-assisted retention prediction and a high-performance liquid chromatographic simulation system , 1989 .

[134]  Marta Lores,et al.  PREOPT-W: A Simulation Program for Off-line Optimization of Binary Gradient Separations in HPLC-II. Data Management and Miscellaneous Aspects of Use , 1996, Comput. Chem..

[135]  B. Klumperman,et al.  Normal phase gradient polymer elution chromatography of polyester resins , 1998 .

[136]  T. Takeuchi,et al.  Role of column temperature in open-tubular microcapillary liquid chromatography , 1982 .

[137]  P. Jandera,et al.  Phase system selectivity and two-dimensional separations in liquid column chromatography. , 2005, Journal of chromatography. A.

[138]  C. Horváth,et al.  Liquid Chromatography with Hydrocarbonaceous Bonded Phases; Theory and Practice of Reversed Phase Chromatography , 1977 .

[139]  T. W. Richards,et al.  THE DENSITY OF LEAD FROM RADIOACTIVE MINERALS. , 1916 .

[140]  K. Ballschmiter,et al.  Recent developments in adsorption liquid chromatography (NP-HPLC) A review , 1998 .

[141]  Tatsunari Yoshida Peptide separation by Hydrophilic-Interaction Chromatography: a review. , 2004, Journal of biochemical and biophysical methods.

[142]  L. Snyder,et al.  Computer simulation for the convenient optimization of isocratic reversed-phase liquid chromatographic separations by varying temperature and mobile phase strength. , 2000, Journal of chromatography. A.

[143]  Y. Baba,et al.  Computer-assisted retention prediction system for oligonucleotides in gradient anion-exchange chromatography. , 1988, Journal of chromatography.

[144]  P. Nikitas,et al.  Effect of the organic modifier concentration on the retention in reversed-phase liquid chromatography I. General semi-thermodynamic treatment for adsorption and partition mechanisms. , 2002, Journal of chromatography. A.

[145]  F. Antia,et al.  Gradient elution in non-linear preparative liquid chromatography , 1989 .

[146]  Pavel Jandera,et al.  Optimisation of gradient elution in normal-phase high-performance liquid chromatography , 1998 .

[147]  E. Hallgren Prediction of protein retention at gradient elution conditions in ion-exchange chromatography. , 1999, Journal of chromatography. A.

[148]  P. Jandera Reversed-phase liquid chromatography of homologous series : A general method for prediction of retention , 1984 .

[149]  L. Snyder,et al.  Separation of mixtures of o-phthalaldehyde-derivatized amino acids by reversed-phase gradient elution : Accuracy of computer simulation for predicting retention and band width , 1989 .

[150]  L. M. Marshall,et al.  Automatically Increasing Solvent Polarity in Chromatography , 1952 .

[151]  J. W. Weyland,et al.  Use of Three-Dimensional Minimum ±-Plots for Optimization of Mobile Phase Composition for RP-HPLC Separation of Sulfonamides , 1984 .

[152]  Marta Lores,et al.  PREOPT-W: A Simulation Program for Off-line Optimization of Binary Gradient Separations in HPLC-I. Fundamentals and Overview , 1996, Comput. Chem..

[153]  H. Billiet,et al.  Systematic study of ternary solvent behaviour in reversed-phase liquid chromatography , 1981 .

[154]  T. Ishihara,et al.  Optimization of monoclonal antibody purification by ion-exchange chromatography. Application of simple methods with linear gradient elution experimental data. , 2005, Journal of chromatography. A.

[155]  H. Engelhardt,et al.  Control of adsorption and solubility in gradient high performance liquid chromatography. Part 4. Sudden-transition gradient elution of styrene/ethyl methacrylate copolymers in reversed phase mode , 1994 .

[156]  M. Holčapek,et al.  Investigation of chromatographic behaviour of ethoxylated alcohol surfactants in normal-phase and reversed-phase systems using high-performance liquid chromatography–mass spectrometry , 1998 .

[157]  L. Snyder,et al.  Measurement and use of retention data from high-performance gradient elution : Contributions from “non-ideal” gradient equipment , 1984 .

[158]  Y. Yokoyama,et al.  Separation and determination of amino acids, creatinine, bioactive amines and nucleic acid bases by dual-mode gradient ion-pair chromatography. , 1996, Journal of chromatography. A.

[159]  C. McNeff,et al.  Peer Reviewed: Zirconia Stationary Phases for Extreme Separations , 2001 .

[160]  L. Snyder,et al.  Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time III. Improving the accuracy of computer simulation. , 1999, Journal of chromatography. A.

[161]  P. Jandera,et al.  Gradient elution in liquid chromatography , 1981 .

[162]  L. Snyder,et al.  Solvent strength of multicomponent mobile phases in liquid—solid chromatography : Binary-solvent mixtures and solvent localization , 1981 .

[163]  Q. Nguyen,et al.  Mesoporous polybutadiene-modified zirconia for high-temperature packed capillary liquid chromatography: column preparation and temperature programming stability. , 2003, Journal of chromatography. A.

[164]  James M. Minor,et al.  Optimization of solvent strength and selectivity for reversed-phase liquid chromatography using an interactive mixture-design statistical technique , 1980 .

[165]  K. Unger,et al.  Comparative study on the column performance of microparticulate 5-μm C18-bonded and monolithic C18-bonded reversed-phase columns in high-performance liquid chromatography , 1999 .

[166]  Lloyd R. Snyder,et al.  Practical HPLC method development , 1988 .

[167]  Michel Martin On the Fundamental Retention Equation in Gradient Elution Liquid Chromatography , 1988 .

[168]  M. Jaroniec Partition and displacement models in reversed-phase liquid chromatography with mixed eluents , 1993 .

[169]  R. Scott,et al.  Rational series of solvents for use in incremental gradient elution , 1973 .

[170]  J. Dolan,et al.  Simultaneous variation of temperature and gradient steepness for reversed-phase high-performance liquid chromatography method development. II. The use of further changes in conditions. , 1998, Journal of chromatography. A.

[171]  L. Snyder,et al.  Combined use of temperature and solvent strength in reversed-phase gradient elution II. Comparing selectivity for different samples and systems , 1996 .

[172]  Gradient flow programming: a coupling of gradient elution and flow programming , 1989 .

[173]  T. Greibrokk,et al.  Separation of polyethylene glycol oligomers using inverse temperature programming in packed capillary liquid chromatography. , 2001, Journal of chromatography. A.

[174]  L. Snyder,et al.  Prediction of precise isocratic retention data from two or more gradient elution runs. Analysis of some associated errors , 1986 .

[175]  A. Siouffi,et al.  Computer-assisetd optimization with nemrod software , 1989 .

[176]  L. Snyder,et al.  Separation of peptide mixtures by reversed-phase gradient elution. Use of flow rate changes for controlling band spacing and improving resolution , 1986 .

[177]  L. R. Snyder Principles of gradient elution. , 1965, Chromatographic reviews.

[178]  Anita M. Katti,et al.  Fundamentals of Preparative and Nonlinear Chromatography , 1994 .

[179]  C. Horváth,et al.  Solvophobic interactions in liquid chromatography with nonpolar stationary phases , 1976 .

[180]  J. Mazzeo,et al.  A theoretical study of the optimization of gradients at elevated temperature , 2001 .

[181]  L. Snyder,et al.  Gradient elution in high-performance liquid chromatography : II. Practical application to reversed-phase systems , 1979 .

[182]  David J. Anderson,et al.  Gradient chromatofocusing. versatile pH gradient separation of proteins in ion-exchange HPLC: characterization studies. , 2002, Analytical chemistry.

[183]  G. Guiochon,et al.  Comparison of some packings for reversed-phase high-performance liquid—solid chromatography: II. Some theoretical considerations , 1978 .

[184]  Joe M. Davis Statistical theory of spot overlap in two-dimensional separations , 1991 .

[185]  J. R. Torres-Lapasió,et al.  Error analysis and performance of different retention models in the transference of data from/to isocratic/gradient elution. , 2003, Journal of chromatography. A.

[186]  F. Fitzpatrick,et al.  Molar mass distributions by gradient liquid chromatography: predicting and tailoring selectivity. , 2005, Journal of chromatography. A.

[187]  P. Jandera,et al.  Characterisation and prediction of retention in isocratic and gradient-elution normal-phase high-performance liquid chromatography on polar bonded stationary phases with binary and ternary solvent systems , 1997 .

[188]  P. Jandera,et al.  Prediction of retention in gradient-elution normal-phase high-performance liquid chromatography with binary solvent gradients , 1997 .

[189]  F. Fitzpatrick,et al.  Predicting the behaviour of polydisperse polymers in liquid chromatography under isocratic and gradient conditions. , 2002, Journal of chromatography. A.

[190]  R. Kaliszan,et al.  pH gradient reversed-phase HPLC. , 2004, Analytical chemistry.

[191]  E. Soczewiński Solvent composition effects in liquid-solid systems , 1977 .

[192]  P. Haddad,et al.  Critical comparison of retention models for optimisation of the separation of anions in ion chromatography: III. Anion chromatography using hydroxide eluents on a Dionex AS11 stationary phase , 1999 .

[193]  J. Dolan,et al.  DryLab computer simulation for high-performance liquid chromatographic method development. II. Gradient elution. , 1989, Journal of chromatography.

[194]  K. Papachristos,et al.  Optimisation technique for stepwise gradient elution in reversed-phase liquid chromatography. , 2004, Journal of chromatography. A.

[195]  P. Jandera,et al.  Gradient elution in liquid chromatography : IX. Selection of optimal conditions in stepwise-elution liquid chromatography , 1979 .

[196]  L. Snyder,et al.  Combined use of temperature and solvent strength in reversed-phase gradient elution. I. Predicting separation as a function of temperature and gradient conditions. , 1996, Journal of chromatography. A.

[197]  R. Plumb,et al.  Direct analysis of pharmaceutical compounds in human plasma with chromatographic resolution using an alkyl-bonded silica rod column. , 2001, Rapid communications in mass spectrometry : RCM.

[198]  F. Fitzpatrick,et al.  Application of the reversed-phase liquid chromatographic model to describe the retention behaviour of polydisperse macromolecules in gradient and isocratic liquid chromatography. , 2003, Journal of chromatography. A.

[199]  G. Guiochon,et al.  Retention behavior of alkylbenzenes as a function of temperature and mobile phase composition in reversed-phase chromatography , 1982 .

[200]  Lloyd R. Snyder,et al.  Retention in reversed-phase liquid chromatography as a function of mobile-phase composition , 1993 .

[201]  E. Soczewiński,et al.  Application of the law of mass action to thin-layer adsorption chromatography systems of the type electron donor solvent — Silica gel , 1971 .

[202]  Lu Xiaoming,et al.  Development of a high-performance liquid chromatograph with artificial intelligence , 1984 .

[203]  E. Lundanes,et al.  Temperature-programmed packed-capillary liquid chromatographic separation of polystyrenes , 2001 .

[204]  U. Neue Theory of peak capacity in gradient elution. , 2005, Journal of chromatography. A.

[205]  Tsuneo Okuyama,et al.  Prediction of peptide retention times in reversed-phases high-performance liquid chromatography during linear gradient elution , 1982 .

[206]  P. Jandera,et al.  Gradient elution in liquid chromatography : X. Retention characteristics in reversed-phase gradient elution chromatography , 1979 .

[207]  L. Snyder,et al.  Optimization model for the gradient elution separation of peptide mixtures by reversed-phase high-performance liquid chromatography : Verification of retention relationships , 1984 .

[208]  M. Hearn,et al.  High-performance liquid chromatography of amino acids, peptides and proteins. LXXIII. Investigations on the relationships between molecular structure, retention and band-broadening properties of polypeptides separated by reversed-phase high-performance liquid chromatography. , 1987, Journal of chromatography.

[209]  T. Schunk Composition distribution separation of methyl methacrylate-methacrylic acid copolymers by normal-phase gradient elution high-performance liquid chromatography , 1994 .

[210]  J. Berridge Unattended optimisation of reversed-phase high-performance liquid chromatographic separations using the modified simplex algorithm , 1982 .

[211]  L. Snyder,et al.  Solvent selectivity in the liquid chromatographic separation of polystyrene oligomers on silica , 1984 .

[212]  Joe M. Davis Statistical theory of spot overlap for n-dimensional separations , 1993 .

[213]  D. Armstrong,et al.  Nonaqueous reversed-phase liquid chromatographic fractionation of polystyrene , 1982 .

[214]  P. Jandera,et al.  Gradient elution in liquid chromatography : III. Verification of the theoretical relationships for elution characteristics (retention volume, band width and resolution) in isocratic and gradient elution chromatography on silica , 1974 .

[215]  T. Greibrokk,et al.  Temperature-programmed packed capillary liquid chromatography coupled to evaporative light-scattering detection and electrospray ionization time-of-flight mass spectrometry for characterization of high-molecular-mass hindered amine light stabilizers. , 2004, Journal of chromatography. A.

[216]  J. W. Dolan,et al.  Software for chromatographic method development , 1991 .

[217]  J. Dolan,et al.  Reversed-phase separation of achiral isomers by varying temperature and either gradient time or solvent strength. , 2000, Journal of chromatography. A.

[218]  B. Jönsson,et al.  Influence of charge regulation in electrostatic interaction chromatography of proteins. , 1996, Analytical chemistry.

[219]  J. M. Minor,et al.  Simultaneous selectivity optimization of mobile and stationary phases in reversed-phased liquid chromatography for isocratic separations of phenylthiohydantoin amino acid derivatives , 1985 .

[220]  S. Hara Use of thin-layer chromatographic systems in high-performance liquid chromatographic separations , 1977 .

[221]  R. Cela,et al.  Influence of temperature in reverse-phase high-performance liquid chromatography with gradient elution , 1987 .

[222]  P. Jandera,et al.  POSSIBILITIES OF DETERMINATION AND PREDICTION OF SOLUTE CAPACITY FACTORS IN REVERSED-PHASE SYSTEMS WITH PURE WATER AS THE MOBILE PHASE , 1990 .

[223]  G. Guiochon,et al.  Interaction indexes for prediction of retention in reversed-phase liquid chromatography , 1982 .

[224]  Y. Baba Computer-assisted retention prediction for high-performance liquid chromatography in the ion-exchange mode , 1989 .

[225]  I. R. Snyder Mobile phase effects in liquid-solid chromatography , 1983 .

[226]  A. Alpert Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. , 1990, Journal of chromatography.

[227]  O. Cabaleiro,et al.  PREOPT-W: Off-line Optimization of Binary Gradient Separations in HPLC By Simulation - III. Phase 2and the Objective Functions , 1996, Comput. Chem..

[228]  L. Snyder,et al.  Combined use of temperature and solvent strength in reversed-phase gradient elution. III. Selectivity for ionizable samples as a function of sample type and pH , 1996 .

[229]  L. Snyder,et al.  Separation of proteins by gradient elution from ion-exchange columns : Optimizing experimental conditions , 1986 .

[230]  R. Kaliszan,et al.  pH gradient high-performance liquid chromatography: theory and applications. , 2004, Journal of chromatography. A.

[231]  D. Anderson,et al.  Gradient chromatofocusing high-performance liquid chromatography. I. Practical aspects. , 1997, Journal of chromatography. A.