Including spatially variable effective soil depths in TOPMODEL

Abstract TOPMODEL ( Beven and Kirkby, 1979 ; Beven et al., 1995 ) was one of the first attempts to model distributed hydrological responses based on variable contributing area concepts. It makes use of an index of hydrological similarity based on an analysis of the topographic data. The index approach was later generalised to take account of spatial variability of soil transmissivities, but no similar spatial analysis of the variability in the rate of the decrease of the transmissivity with depth has yet been examined. This paper shows how the TOPMODEL theory can be extended to handle this spatial variability, using a 2D distribution function of a new soil depth-topographic index of hydrological similarity. A first sensitivity analysis of the effect of variable soil depths on the model predictions for the Maurets catchment, France, is presented. Predicted discharges and calibrated parameter values are not sensitive to the patterns of effective soil depth investigated. Distributed predictions may be more sensitive but raise questions of how to obtain the parameter data required.

[1]  K. Beven,et al.  Sensitivity to space and time resolution of a hydrological model using digital elevation data. , 1995 .

[2]  K. N. Eshleman,et al.  The role of soil water in stormflow generation in a forested headwater catchment: synthesis of natural tracer and hydrometric evidence , 1994 .

[3]  K. Beven,et al.  The in(a/tan/β) index:how to calculate it and how to use it within the topmodel framework , 1995 .

[4]  Tim Burt,et al.  Topographic controls of soil moisture distributions , 1985 .

[5]  Keith Beven,et al.  Linking parameters across scales: Subgrid parameterizations and scale dependent hydrological models. , 1995 .

[6]  Ch. Obled,et al.  Unit hydrograph revisited: an alternate iterative approach to UH and effective precipitation identification , 1993 .

[7]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[8]  Christian Walter,et al.  Mapping waterlogging of soils using digital terrain models , 1995 .

[9]  Stuart N. Lane,et al.  Landform monitoring, modelling, and analysis , 1998 .

[10]  Keith Beven,et al.  Analytical compensation between DTM grid resolution and effective values of staurated hydraulic conductivity within the TOPMODEL framework , 1997 .

[11]  J.-P. Jordan Spatial and temporal variability of stormflow generation processes on a Swiss catchment , 1994 .

[12]  Marco Franchini,et al.  Physical interpretation and sensitivity analysis of the TOPMODEL , 1996 .

[13]  P. Cappus ÉTUDE DES LOIS DE L'ÉCOULEMENT - APPLICATION AU CALCUL ET À LA PRÉVISION DES DÉBITS , 1960 .

[14]  Richard J. Chorley Spatial analysis in geomorphology , 1972 .

[15]  R. D. Black,et al.  Partial Area Contributions to Storm Runoff in a Small New England Watershed , 1970 .

[16]  Ian D. Moore,et al.  A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and , 1994 .

[17]  Kevin Bishop,et al.  A TEST OF TOPMODEL'S ABILITY TO PREDICT SPATIALLY DISTRIBUTED GROUNDWATER LEVELS , 1997 .

[18]  K. Beven,et al.  Toward a generalization of the TOPMODEL concepts:Topographic indices of hydrological similarity , 1996 .

[19]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[20]  C. Cosandey « Formation des crues "cévenoles" dans des bassins élémentaires du Mont Lozère » , 1994 .

[21]  K. Beven,et al.  THE PREDICTION OF HILLSLOPE FLOW PATHS FOR DISTRIBUTED HYDROLOGICAL MODELLING USING DIGITAL TERRAIN MODELS , 1991 .

[22]  Keith Beven,et al.  Discharge and water table predictions using a generalised TOPMODEL formulation , 1997 .

[23]  Georges-Marie Saulnier Information pédologique spatialisée et traitements topographiques améliorés dans la modélisation hydrologique par TOPMODEL , 1996 .

[24]  Keith Beven,et al.  APPLICATION OF A GENERALIZED TOPMODEL TO THE SMALL RINGELBACH CATCHMENT, VOSGES, FRANCE , 1996 .