Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part II: Non-linear left-invariant diffusions on invertible orientation scores

By means of a special type of wavelet unitary transform we construct an orientation score from a grey-value image. This orientation score is a complex-valued function on the 2D Euclidean motion group SE(2) and gives us explicit information on the presence of local orientations in an image. As the transform between image and orientation score is unitary we can relate operators on images to operators on orientation scores in a robust manner. Here we consider nonlinear adaptive diffusion equations on these invertible orientation scores. These nonlinear diffusion equations lead to clear improvements of the celebrated standard "coherence enhancing diffusion" equations on images as they can enhance images with crossing contours. Here we employ differential geometry on SE(2) to align the diffusion with optimized local coordinate systems attached to an orientation score, allowing us to include local features such as adaptive curvature in our diffusions.

[1]  G W Mackey,et al.  Imprimitivity for Representations of Locally Compact Groups I. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[2]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[3]  S. Sternberg Lectures on Differential Geometry , 1964 .

[4]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[5]  J. Marsden,et al.  Reduction of symplectic manifolds with symmetry , 1974 .

[6]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[7]  B. Gaveau Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents , 1977 .

[8]  S. Donaldson The Yang-Mills equations on Kahler manifolds , 1982 .

[9]  P. Griffiths,et al.  Reduction for Constrained Variational Problems and κ 2 2 ds , 1986 .

[10]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Karen Uhlenbeck,et al.  The Yang-Mills Equations , 1991 .

[12]  Mark Nitzberg,et al.  Nonlinear Image Filtering with Edge and Corner Enhancement , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Waldemar Hebisch,et al.  Estimates on the semigroups generated by left invariant operators on Lie groups. , 1992 .

[14]  G. Cottet,et al.  Image processing through reaction combined with nonlinear diffusion , 1993 .

[15]  D. Mumford Elastica and Computer Vision , 1994 .

[16]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[17]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[18]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[19]  G. Chirikjian,et al.  Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups , 2000 .

[20]  Nir A. Sochen Stochastic Processes in Vision: From Langevin to Beltrami , 2001, ICCV.

[21]  M. Van Ginkel,et al.  Image analysis using orientation space based on steerable filters , 2002 .

[22]  Steven W. Zucker,et al.  Sketches with Curvature: The Curve Indicator Random Field and Markov Processes , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Phillip A. Griffiths,et al.  Exterior Differential Systems and Euler-Lagrange Partial Differential Equations , 2003 .

[24]  Remco Duits,et al.  Image processing via shift-twist invariant operations on orientation bundle functions , 2004, ICPR 2004.

[25]  Joachim Weickert,et al.  Coherence-Enhancing Diffusion Filtering , 1999, International Journal of Computer Vision.

[26]  Max A. Viergever,et al.  Invertible Apertured Orientation Filters in Image Analysis , 1999, International Journal of Computer Vision.

[27]  Remco Duits Perceptual organization in image analysis : a mathematical approach based on scale, orientation and curvature , 2005 .

[28]  Giovanna Citti,et al.  A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.

[29]  Michael Felsberg,et al.  Image Analysis and Reconstruction using a Wavelet Transform Constructed from a Reducible Representation of the Euclidean Motion Group , 2007, International Journal of Computer Vision.

[30]  N. Ayache,et al.  Bi-invariant Means in Lie Groups. Application to Left-invariant Polyaffine Transformations , 2006 .

[31]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[32]  R. Duits,et al.  Left-invariant Stochastic Evolution Equations on SE(2) and its Applications to Contour Enhancement and Contour Completion via Invertible Orientation Scores , 2007, 0711.0951.

[33]  B. H. Haar Romeny,et al.  Invertible orientation scores as an application of generalized wavelet theory , 2007, Pattern Recognition and Image Analysis.

[34]  R. Duits,et al.  The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2D-Euclidean motion group , 2007 .

[35]  Remco Duits,et al.  Nonlinear Diffusion on the 2D Euclidean Motion Group , 2007, SSVM.

[36]  Remco Duits,et al.  Curvature Estimation for Enhancement of Crossing Curves , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[37]  B. H. Romeny,et al.  Invertible Orientation Scores as an Application of Generalized Wavelet Theory , 2007, Pattern Recognition and Image Analysis.

[38]  Remco Duits,et al.  Crossing-Preserving Coherence-Enhancing Diffusion on Invertible Orientation Scores , 2009, International Journal of Computer Vision.

[39]  astronomy Physics,et al.  Principe de Moindre Action , 2010 .

[40]  R. Duits,et al.  Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part I: Linear left-invariant diffusion equations on SE(2) , 2010 .

[41]  M. A. Akivis,et al.  Élie Cartan (1869-1951) , 2011 .