Do Bayesian methods lead to more precise chronologies? ‘BayLum’ and a first OSL-based chronology for the Palaeolithic open-air site of Mirak (Iran)

[1]  W. J. Thompson,et al.  Bayesian Data Analysis , 2024, The SAGE Encyclopedia of Research Design.

[2]  D. D. Rosenstein Thermoluminescence Dating , 2021, The Encyclopedia of Ancient History.

[3]  E. Trinkaus,et al.  A Neanderthal from the Central Western Zagros, Iran. Structural reassessment of the Wezmeh 1 maxillary premolar. , 2019, Journal of human evolution.

[4]  M. Mirazón Lahr,et al.  Upper Paleolithic cultural diversity in the Iranian Zagros Mountains and the expansion of modern humans into Eurasia. , 2019, Journal of human evolution.

[5]  Milad Hashemi,et al.  The open-air Paleolithic site of Mirak, northern edge of the Iranian Central Desert (Semnan, Iran): Evidence of repeated human occupations during the late Pleistocene , 2019, Comptes Rendus Palevol.

[6]  N. Guidon,et al.  Another site, same old song: The Pleistocene-Holocene archaeological sequence of Toca da Janela da Barra do Antonião-North, Piauí, Brazil , 2019, Quaternary Geochronology.

[7]  A. Philippe,et al.  BayLum - An R package for Bayesian analysis of OSL ages: An introduction , 2019, Quaternary Geochronology.

[8]  G. Guérin,et al.  OSL signal saturation and dose rate variability: Investigating the behaviour of different statistical models , 2018, Radiation Measurements.

[9]  Lanos Philippe,et al.  EVENT DATE MODEL: A ROBUST BAYESIAN TOOL FOR CHRONOLOGY BUILDING , 2018 .

[10]  K. Douka,et al.  Human Colonization of Asia in the Late Pleistocene , 2017, Current Anthropology.

[11]  R. Dennell Human Colonization of Asia in the Late Pleistocene , 2017, Current Anthropology.

[12]  C. Marean,et al.  Chronometric investigations of the Middle to Upper Paleolithic transition in the Zagros Mountains using AMS radiocarbon dating and Bayesian age modelling. , 2017, Journal of human evolution.

[13]  A. Philippe,et al.  Absorbed dose, equivalent dose, measured dose rates, and implications for OSL age estimates: Introducing the Average Dose Model , 2017 .

[14]  A. Pourmand,et al.  Speleothem records of glacial/interglacial climate from Iran forewarn of future Water Availability in the interior of the Middle East , 2017 .

[15]  A. Philippe,et al.  Bayesian analysis of individual and systematic multiplicative errors for estimating ages with stratigraphic constraints in optically stimulated luminescence dating , 2017 .

[16]  E. Carbonell,et al.  Understanding the emergence of modern humans and the disappearance of Neanderthals: Insights from Kaldar Cave (Khorramabad Valley, Western Iran) , 2017, Scientific Reports.

[17]  C. Tribolo,et al.  Across the Gap: Geochronological and Sedimentological Analyses from the Late Pleistocene-Holocene Sequence of Goda Buticha, Southeastern Ethiopia , 2017, PloS one.

[18]  Saman Heydari-Guran,et al.  The MUP Zagros Project: tracking the Middle–Upper Palaeolithic transition in the Kermanshah region, west-central Zagros, Iran , 2017, Antiquity.

[19]  Milad Hashemi,et al.  Playas and Middle Paleolithic settlement of the Iranian Central Desert: The discovery of the Chah-e Jam Middle Paleolithic site , 2016 .

[20]  J. Jaubert,et al.  CONTINUITY AND CHANGE IN THE LATE PLEISTOCENE LITHIC INDUSTRIES OF THE CENTRAL ZAGROS: A TYPO-TECHNOLOGICAL ANALYSIS OF LITHIC ASSEMBLAGES FROM GHAR-E KHAR CAVE, BISOTUN, IRAN , 2016 .

[21]  Michael C. Dietze,et al.  The abanico plot : Visualising chronometric data with individual standard errors , 2016 .

[22]  Loïc Martin Caractérisation et modélisation d'objets archéologiques en vue de leur datation par des méthodes paléo-dosimétriques : simulation des paramètres dosimétriques sous Geant4 , 2015 .

[23]  Michael C. Dietze,et al.  Comprehensive Luminescence Dating Data Analysis , 2015 .

[24]  D. Richter,et al.  Lexsyg smart — a luminescence detection system for dosimetry, material research and dating application , 2015 .

[25]  A. Murray,et al.  A new irradiated quartz for beta source calibration , 2015 .

[26]  A. Zink,et al.  Bayesian analysis of luminescence measurements , 2015 .

[27]  G. A. T. Duller,et al.  The Analyst software package for luminescence data: overview and recent improvements , 2015 .

[28]  Caitlin E. Buck,et al.  On being a good Bayesian , 2015 .

[29]  G. Guérin,et al.  A multi-method luminescence dating of the Palaeolithic sequence of La Ferrassie based on new excavations adjacent to the La Ferrassie 1 and 2 skeletons , 2015 .

[30]  G. Duller,et al.  DRAC: Dose Rate and Age Calculator for trapped charge dating , 2015 .

[31]  Philippe Lanos,et al.  A Bayesian central equivalent dose model for optically stimulated luminescence dating , 2015 .

[32]  Z. Jacobs,et al.  Optical dating in archaeology: thirty years in retrospect and grand challenges for the future , 2015 .

[33]  G. Clark,et al.  Late Pleistocene dispersal corridors across the Iranian Plateau A case study from Mirak, a Middle Paleolithic site on the northern edge of the Iranian Central desert Dasht-e Kavir , 2013 .

[34]  D. Richter,et al.  Lexsyg — A new system for luminescence research , 2013 .

[35]  A. Zink A coarse Bayesian approach to evaluate luminescence ages , 2013 .

[36]  G. Guérin,et al.  On the use of the infinite matrix assumption and associated concepts: A critical review , 2012 .

[37]  A. Murray,et al.  Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals , 2012 .

[38]  G. Guérin,et al.  Preliminary insight into dose deposition processes in sedimentary media on a scale of single grains: Monte Carlo modelling of the effect of water on the gamma dose rate , 2012 .

[39]  A. Murray,et al.  A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments , 2012 .

[40]  Sebastian Kreutzer,et al.  Introducing an R package for luminescence dating analysis , 2012 .

[41]  D. Flas,et al.  New radiocarbon dates for the Zagros Aurignacian from Yafteh cave, Iran. , 2011, Journal of human evolution.

[42]  Stephen W. S. McKeever,et al.  Separation of quartz optically stimulated luminescence components using green (525 nm) stimulation , 2011 .

[43]  Richard M. Bailey,et al.  Direct measurement of the fast component of quartz optically stimulated luminescence and implications for the accuracy of optical dating , 2010 .

[44]  E. Wolff,et al.  Millennial-scale variability during the last glacial: The ice core record , 2010 .

[45]  P. Guibert,et al.  The importance of U-series disequilibrium of sediments in luminescence dating: A case study at the Roc de Marsal Cave (Dordogne, France) , 2009 .

[46]  A. Murray,et al.  Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts , 2008 .

[47]  N. Klasen,et al.  Luminescence dating: Basics, methods and applications , 2008 .

[48]  Alicia Huntriss,et al.  A Bayesian analysis of luminescence dating. , 2008 .

[49]  P. Antoine,et al.  Discovery of new open-air Paleolithic localities in Central Alborz, Northern Iran. , 2007, Journal of human evolution.

[50]  D. Flas,et al.  The Aurignacian in the Zagros region: new research at Yafteh Cave, Lorestan, Iran , 2007, Antiquity.

[51]  A. Murray,et al.  A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols , 2006 .

[52]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[53]  J. Singarayer,et al.  Component-resolved bleaching spectra of quartz optically stimulated luminescence: preliminary results and implications for dating , 2004 .

[54]  C. Buck,et al.  Tools for Construction Chronologies—crossing Disciplinary Boundaries , 2004 .

[55]  Edward J. Rhodes,et al.  Bayesian methods applied to the interpretation of multiple OSL dates: high precision sediment ages from Old Scatness Broch excavations, Shetland Isles , 2003 .

[56]  G. Duller Distinguishing quartz and feldspar in single grain luminescence measurements , 2003 .

[57]  R. Bailey Towards a general kinetic model for optically and thermally stimulated luminescence of quartz , 2001 .

[58]  A. Murray,et al.  Luminescence dating of quartz using an improved single aliquot regenerative-dose protocol , 2000 .

[59]  Heidi Cullen,et al.  A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates , 1997 .

[60]  Enver Bulur,et al.  An alternative technique for optically stimulated luminescence (OSL) experiment , 1996 .

[61]  C. D. Litton,et al.  Bayesian Approach to Interpreting Archaeological Data , 1996 .

[62]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[63]  J. Prescott,et al.  Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations , 1994 .

[64]  D. Olszewski,et al.  The Zagros Aurignacian , 1994, Current Anthropology.

[65]  J. Jouzel,et al.  Evidence for general instability of past climate from a 250-kyr ice-core record , 1993, Nature.

[66]  H. Heinrich,et al.  Origin and Consequences of Cyclic Ice Rafting in the Northeast Atlantic Ocean During the Past 130,000 Years , 1988, Quaternary Research.

[67]  K. V. Flannery,et al.  The Prehistory of Southwestern Iran: A Preliminary Report , 1968, Proceedings of the Prehistoric Society.

[68]  R. Solecki Prehistory in Shanidar Valley, Northern Iraq: Fresh insights into Near Eastern prehistory from the Middle Paleolithic to the Proto-Neolithic are obtained. , 1963, Science.

[69]  C. Tribolo,et al.  How reliable are our beta-source calibrations? , 2019 .

[70]  Stefan Vlaminck Northeastern Iranian loess and its palaeoclimatic implications , 2018 .

[71]  Pierre Guibert,et al.  Bayesian statistics in luminescence dating: The ’baSAR’-model and its implementation in the R package ’Luminescence’ , 2016 .

[72]  David Eichelberger,et al.  Tools For Constructing Chronologies Crossing Disciplinary Boundaries , 2016 .

[73]  A. Medialdea,et al.  Re-examination of common extraction and purification methods of quartz and feldspar for luminescence dating , 2015 .

[74]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[75]  Elham Ghasidian The early upper paleolithic occupation at Ghār-e Boof cave : a reconstruction of cultural tradition in the southern Zagros Mountains of Iran , 2014 .

[76]  M. Brovelli,et al.  Late Pleistocene , 2014 .

[77]  J. Middelburg,et al.  SpringerBriefs in Earth System Sciences , 2013 .

[78]  Norbert Mercier,et al.  Dose-rate conversion factors: update , 2011 .

[79]  B. Mauz,et al.  On the dose-rate estimate of carbonate-rich sediments for trapped charge dating , 2008 .

[80]  E. Trinkaus,et al.  Middle paleolithic human remains from Bisitun Cave, Iran , 2006 .

[81]  O. Bar‐Yosef,et al.  From Africa to Eurasia — early dispersals , 2001 .

[82]  M. Baril,et al.  The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating , 1997 .

[83]  P. Guibert,et al.  TL dating: Low background gamma spectrometry as a tool for the determination of the annual dose , 1991 .

[84]  S. McKeever Mechanisms of thermoluminescence production: Some problems and a few answers? , 1991 .

[85]  P. Townsend,et al.  Models for the sensitization of thermoluminescence in silica fibres , 1991 .

[86]  M. L. W. Thewalt,et al.  Optical dating of sediments , 1985, Nature.

[87]  H. Dibble The Mousterian Industry from Bisitun Cave (Iran) , 1984 .

[88]  E. Trinkaus The Shanidar Neandertals , 1983 .

[89]  J. R. Prescott,et al.  The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependences , 1982 .