Infrared Emission from the Nearby Cool Core Cluster Abell 2597

We observed the brightest central galaxy (BCG) in the nearby (z = 0.0821) cool core galaxy cluster Abell 2597 with the IRAC and MIPS instruments on board the Spitzer Space Telescope. The BCG was clearly detected in all Spitzer bandpasses, including the 70 and 160 μm wave bands. We report aperture photometry of the BCG. The spectral energy distribution exhibits a clear excess in the far-IR over a Rayleigh-Jeans stellar tail, indicating a star formation rate of ~4-5 M☉ yr-1, consistent with the estimates from the UV and its Hα luminosity. This large far-IR luminosity is consistent with that of a starburst or a luminous infrared galaxy, but together with a very massive and old population of stars that dominate the energy output of the galaxy. If the dust is at one temperature, the ratio of 70 to 160 μm fluxes indicates that the dust emitting mid-IR in this source is somewhat hotter than the dust emitting mid-IR in two BCGs at higher redshift (z ~ 0.2-0.3) and higher far-IR luminosities observed earlier by Spitzer in clusters Abell 1835 and Zwicky 3146.

[1]  R. Siebenmorgen,et al.  Dust in starburst nuclei and ULIRGs - SED models for observers , 2006, astro-ph/0606444.

[2]  G. Rieke,et al.  A Large Mass of H2 in the Brightest Cluster Galaxy in Zwicky 3146 , 2006, astro-ph/0610164.

[3]  G. Kauffmann,et al.  AGN-controlled cooling in elliptical galaxies , 2006 .

[4]  Laboratoire d'Astrophysique de Marseille,et al.  Spitzer Observations of the Brightest Galaxies in X-Ray-Luminous Clusters , 2006, astro-ph/0603656.

[5]  A. Edge,et al.  Cold molecular gas in the Perseus cluster core - Association with X-ray cavity, Halpha filaments and cooling flow - , 2006, astro-ph/0603350.

[6]  J. Bregman,et al.  O VI Observations of Galaxy Clusters: Evidence for Modest Cooling Flows , 2006, astro-ph/0602323.

[7]  G. Collins The next generation. , 2006, Scientific American.

[8]  M. Donahue,et al.  Entropy Profiles in the Cores of Cooling Flow Clusters of Galaxies , 2005, astro-ph/0511401.

[9]  M. Donahue,et al.  Two Clusters of Galaxies with Radio-quiet Cooling Cores , 2005, astro-ph/0508587.

[10]  Martin G. Cohen,et al.  Absolute Calibration of the Infrared Array Camera on the Spitzer Space Telescope , 2005, astro-ph/0507139.

[11]  M. Bremer,et al.  HII and H2 in the envelopes of cooling flow central galaxies , 2005, astro-ph/0504413.

[12]  R. Morris,et al.  An XMM-Newton observation of Abell 2597 , 2005, astro-ph/0501347.

[13]  Erick T. Young,et al.  Reduction Algorithms for the Multiband Imaging Photometer for Spitzer , 2004, SPIE Astronomical Telescopes + Instrumentation.

[14]  A. Koekemoer,et al.  Hubble Space Telescope STIS Far-Ultraviolet Observations of the Central Nebulae in the Cooling-Core Clusters A1795 and A2597 , 2004 .

[15]  Gary J. Melnick,et al.  In-flight performance and calibration of the Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[16]  J. Binney On the origin of the galaxy luminosity function , 2003, astro-ph/0308172.

[17]  A. Edge,et al.  Resolving Molecular Gas in the Central Galaxies of Cooling Flow Clusters , 2003 .

[18]  Wm. A. Wheaton,et al.  Spectral Irradiance Calibration in the Infrared. XIV. The Absolute Calibration of 2MASS , 2003, astro-ph/0304350.

[19]  D. Barnes,et al.  Uniformity of foreground Galactic neutral Hydrogen over cooling flow clusters , 2003, astro-ph/0304065.

[20]  Stefi A. Baum,et al.  Discovery of Ghost Cavities in the X-Ray Atmosphere of Abell 2597 , 2001 .

[21]  C. Carilli,et al.  Discovery of Ghost Cavities in Abell 2597's X-ray Atmosphere , 2001, astro-ph/0110554.

[22]  J. Hutchings,et al.  FUSE Observations of Cooling-Flow Gas in the Galaxy Clusters A1795 and A2597 , 2001, astro-ph/0106279.

[23]  A. Edge The detection of molecular gas in the central galaxies of cooling flow clusters , 2001, astro-ph/0106225.

[24]  J. Jernigan,et al.  X-ray imaging spectroscopy of Abell 1835 , 2000, astro-ph/0010658.

[25]  M. Bremer,et al.  Infrared spectra of cooling flow galaxies , 2000, astro-ph/0009418.

[26]  M. Donahue,et al.  Hubble Space Telescope Observations of Vibrationally Excited Molecular Hydrogen in Cluster Cooling Flow Nebulae , 2000, astro-ph/0007062.

[27]  M. Skrutskie,et al.  2MASS Extended Source Catalog: Overview and Algorithms , 2000, astro-ph/0004318.

[28]  M. Donahue,et al.  The Extended Blue Continuum and Line Emission around the Central Radio Galaxy in Abell 2597 , 1999, astro-ph/9906335.

[29]  B. McNamara,et al.  An Alignment Effect in FR I Radio Galaxies: U-Band Polarimetry of the Abell 2597 Cluster Central Galaxy , 1998, astro-ph/9810465.

[30]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[31]  A. Aragón-Salamanca,et al.  Spectral gradients in central cluster galaxies: further evidence of star formation in cooling flows , 1998, astro-ph/9804240.

[32]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[33]  M. Donahue,et al.  A Deep Look at the Emission-Line Nebula in Abell 2597 , 1997, astro-ph/9706107.

[34]  R. Elston,et al.  Molecular Hydrogen Emission from Central Cluster Galaxies in Cooling Flows , 1994 .

[35]  K. Matthews,et al.  in Infrared Astronomy with Arrays: The Next Generation , 1994 .

[36]  W. Sparks,et al.  Imaging observations of gas and dust in NGC 4696 and implications for cooling flow models , 1989 .

[37]  Patrick J. McCarthy,et al.  Dynamical, physical, and chemical properties of emission-line nebulae in cooling flows , 1989 .

[38]  A. Fabian,et al.  Cooling flows in clusters of galaxies , 1984, Nature.

[39]  L. Cowie,et al.  The evaporation of spherical clouds in a hot gas. I - Classical and saturated mass loss rates , 1977 .