Automata: from logics to algorithms

We review, in a unified framework, translations from five different logics—monadic second-order logic of one and two successors (S1S and S2S), linear-time temporal logic (LTL), computation tree logic (CTL), and modal µ-calculus (MC)—into appropriate models of finite-state automata on infinite words or infinite trees. Together with emptiness-testing algorithms for these models of automata, this yields decision procedures for these logics. The translations are presented in a modular fashion and in a way such that optimal complexity bounds for satisfiability, conformance (model checking), and realizability are obtained for all logics.

[1]  Rohit Parikh,et al.  A Decision Procedure for the Propositional µ-Calculus , 1983, Logic of Programs.

[2]  Moshe Y. Vardi,et al.  Deterministic Dynamic Monitors for Linear-Time Assertions , 2006, FATES/RV.

[3]  Giacomo Lenzi A Hierarchy Theorem for the µ-Calculus , 1996, ICALP.

[4]  Christof Löding,et al.  Logical theories and compatible operations , 2007, Logic and Automata.

[5]  Dana Fisman,et al.  A Practical Introduction to PSL , 2006, Series on Integrated Circuits and Systems.

[6]  Robert S. Streett Propositional Dynamic Logic of looping and converse , 1981, STOC '81.

[7]  James W. Thatcher,et al.  Generalized finite automata theory with an application to a decision problem of second-order logic , 1968, Mathematical systems theory.

[8]  A. Prasad Sistla,et al.  Deciding branching time logic , 1984, STOC '84.

[9]  Nils Klarlund,et al.  Mona: Monadic Second-Order Logic in Practice , 1995, TACAS.

[10]  J. Richard Buchi Using Determinancy of Games to Eliminate Quantifiers , 1977 .

[11]  Mahesh Viswanathan,et al.  A Higher Order Modal Fixed Point Logic , 2004, CONCUR.

[12]  M. Rabin Decidability of second-order theories and automata on infinite trees. , 1969 .

[13]  Rance Cleaveland,et al.  Faster Model Checking for the Modal Mu-Calculus , 1992, CAV.

[14]  E. Allen Emerson,et al.  The complexity of tree automata and logics of programs , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[15]  Yuri Gurevich,et al.  Trees, automata, and games , 1982, STOC '82.

[16]  A. Prasad Sistla,et al.  Deciding Full Branching Time Logic , 1985, Inf. Control..

[17]  André Arnold Rational omega-Languages are Non-Ambiguous , 1983, Theor. Comput. Sci..

[18]  Pierre Wolper,et al.  Reasoning About Infinite Computations , 1994, Inf. Comput..

[19]  Igor Walukiewicz Pushdown Processes: Games and Model-Checking , 2001, Inf. Comput..

[20]  Orna Kupferman,et al.  Büchi Complementation Made Tighter , 2006, Int. J. Found. Comput. Sci..

[21]  Uri Zwick,et al.  A deterministic subexponential algorithm for solving parity games , 2006, SODA '06.

[22]  Y VardiMoshe,et al.  An automata-theoretic approach to branching-time model checking , 2000 .

[23]  W. Thomas Star-Free Regular Sets of ~o-Sequences , 2004 .

[24]  Ludwig Staiger,et al.  Ω-languages , 1997 .

[25]  Gilles Dowek,et al.  Principles of programming languages , 1981, Prentice Hall International Series in Computer Science.

[26]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[27]  Nicole Schweikardt,et al.  Expressive power of monadic logics on words, trees, pictures, and graphs , 2008, Logic and Automata.

[28]  Moshe Y. Vardi Automata-Theoretic Model Checking Revisited , 2007, VMCAI.

[29]  Christof Löding,et al.  Alternating Automata and Logics over Infinite Words , 2000, IFIP TCS.

[30]  Leslie Lamport,et al.  "Sometime" is sometimes "not never": on the temporal logic of programs , 1980, POPL '80.

[31]  A. Prasad Sistla,et al.  Automatic verification of finite state concurrent system using temporal logic specifications: a practical approach , 1983, POPL '83.

[32]  Chin-Laung Lei,et al.  Efficient Model Checking in Fragments of the Propositional Mu-Calculus (Extended Abstract) , 1986, LICS.

[33]  Thomas Wilke,et al.  Automata logics, and infinite games: a guide to current research , 2002 .

[34]  Moshe Y. Vardi Sometimes and Not Never Re-revisited: On Branching Versus Linear Time , 1998, CONCUR.

[35]  Marcin Jurdziński,et al.  Deciding the Winner in Parity Games is in UP \cap co-Up , 1998, Inf. Process. Lett..

[36]  Amir Pnueli,et al.  Checking that finite state concurrent programs satisfy their linear specification , 1985, POPL.

[37]  Nils Klarlund,et al.  Progress measures for complementation omega -automata with applications to temporal logic , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[38]  Rod M. Burstall,et al.  Program Proving as Hand Simulation with a Little Induction , 1974, IFIP Congress.

[39]  Michele Bugliesi,et al.  Automata, Languages and Programming: 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II (Lecture Notes in Computer Science) , 2006 .

[40]  Olivier Carton,et al.  Automata and semigroups recognizing infinite words , 2008, Logic and Automata.

[41]  Helmut Seidl Fast and Simple Nested Fixpoints , 1996, Inf. Process. Lett..

[42]  Monika Maidl,et al.  The Common Fragment of CTL and LTL , 2000, FOCS.

[43]  Larry Joseph Stockmeyer,et al.  The complexity of decision problems in automata theory and logic , 1974 .

[44]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[45]  Orna Kupferman,et al.  Weak alternating automata are not that weak , 2001, TOCL.

[46]  Colin Stirling,et al.  Modal and Temporal Properties of Processes , 2001, Texts in Computer Science.

[47]  Qiqi Yan Lower Bounds for Complementation of omega-Automata Via the Full Automata Technique , 2008, Log. Methods Comput. Sci..

[48]  Klaus Reinhardt,et al.  The Complexity of Translating Logic to Finite Automata , 2001, Automata, Logics, and Infinite Games.

[49]  Marco Roveri,et al.  From PSL to NBA: a Modular Symbolic Encoding , 2006, 2006 Formal Methods in Computer Aided Design.

[50]  Philippe Schnoebelen,et al.  The Complexity of Temporal Logic Model Checking , 2002, Advances in Modal Logic.

[51]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[52]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[53]  Igor Walukiewicz,et al.  On the Expressive Completeness of the Propositional mu-Calculus with Respect to Monadic Second Order Logic , 1996, CONCUR.

[54]  Dominique Perrin,et al.  Recent Results on Automata and Infinite Words , 1984, MFCS.

[55]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .

[56]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[57]  Dan A. Simovici Review of "The classical decision problem" by Egon Börger,Erich Grädel and Yuri Gurevich. Springer-Verlag 1997. , 2004, SIGA.

[58]  Edmund M. Clarke,et al.  Expressibility results for linear-time and branching-time logics , 1988, REX Workshop.

[59]  M. Rabin Weakly Definable Relations and Special Automata , 1970 .

[60]  Fred Kröger LAR: A logic of algorithmic reasoning , 2004, Acta Informatica.

[61]  Damian Niwinski,et al.  Fixed points vs. infinite generation , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[62]  A. Arnold,et al.  Rudiments of μ-calculus , 2001 .

[63]  Orna Kupferman,et al.  On Complementing Nondeterministic Büchi Automata , 2003, CHARME.

[64]  Nir Piterman,et al.  From Nondeterministic Buchi and Streett Automata to Deterministic Parity Automata , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[65]  Igor Walukiewicz,et al.  Guarded fixed point logic , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[66]  Edmund M. Clarke,et al.  Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons , 1982, Sci. Comput. Program..

[67]  Paul Gastin,et al.  Fast LTL to Büchi Automata Translation , 2001, CAV.

[68]  Mordechai Ben-Ari,et al.  The Temporal Logic of Branching Time , 1981, POPL.

[69]  Orna Grumberg,et al.  Regular Vacuity , 2005, CHARME.

[70]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[71]  Igor Walukiewicz,et al.  Completeness of Kozen's Axiomatisation of the Propositional µ-Calculus , 2000, Inf. Comput..

[72]  Nellie Clarke Brown Trees , 1896, Savage Dreams.

[73]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Automatic Program Verification (Preliminary Report) , 1986, LICS.

[74]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[75]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[76]  Orna Kupferman,et al.  The Weakness of Self-Complementation , 1999, STACS.

[77]  David E. Muller,et al.  Weak alternating automata give a simple explanation of why most temporal and dynamic logics are decidable in exponential time , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[78]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[79]  Amir Pnueli,et al.  On the synthesis of a reactive module , 1989, POPL '89.

[80]  J. R. Büchi,et al.  Solving sequential conditions by finite-state strategies , 1969 .

[81]  Anca Muscholl,et al.  Logical Definability on Infinite Traces , 1996, Theor. Comput. Sci..

[82]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.

[83]  David E. Muller,et al.  Alternating automata on infinite objects, determinacy and Rabin's theorem , 1984, Automata on Infinite Words.

[84]  Didier Caucal Deterministic graph grammars , 2008, Logic and Automata.

[85]  Paul Gastin,et al.  First-order definable languages , 2008, Logic and Automata.

[86]  Stephan Kreutzer,et al.  Non-regular fixed-point logics and games , 2008, Logic and Automata.

[87]  Stephan Kreutzer,et al.  DAG-Width and Parity Games , 2006, STACS.

[88]  Wolfgang Thomas Complementation of Büchi Automata Revised , 1999, Jewels are Forever.

[89]  David E. Muller,et al.  Infinite sequences and finite machines , 1963, SWCT.

[90]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[91]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[92]  Marcin Jurdzinski,et al.  Small Progress Measures for Solving Parity Games , 2000, STACS.

[93]  Wolfgang Thomas,et al.  Observations on determinization of Büchi automata , 2005, Theor. Comput. Sci..

[94]  Antonio Restivo,et al.  Matrix-based complexity functions and recognizable picture languages , 2008, Logic and Automata.

[95]  David E. Muller,et al.  Simulating Alternating Tree Automata by Nondeterministic Automata: New Results and New Proofs of the Theorems of Rabin, McNaughton and Safra , 1995, Theor. Comput. Sci..

[96]  Martin Lange,et al.  Model Checking Fixed Point Logic with Chop , 2002, FoSSaCS.

[97]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[98]  Igor Walukiewicz,et al.  Automata for the Modal mu-Calculus and related Results , 1995, MFCS.

[99]  Pierre Wolper,et al.  Simple on-the-fly automatic verification of linear temporal logic , 1995, PSTV.

[100]  Orna Kupferman,et al.  Model Checking Linear Properties of Prefix-Recognizable Systems , 2002, CAV.

[101]  Satoru Miyano,et al.  Alternating Finite Automata on omega-Words , 1984, CAAP.

[102]  Grzegorz Rozenberg,et al.  Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency , 1988, Lecture Notes in Computer Science.

[103]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[104]  Orna Kupferman,et al.  Safraless decision procedures , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[105]  Pierre Wolper,et al.  Automata theoretic techniques for modal logics of programs: (Extended abstract) , 1984, STOC '84.

[106]  Christof Löding,et al.  MSO on the Infinite Binary Tree: Choice and Order , 2007, CSL.

[107]  Gerard J. Holzmann,et al.  The Model Checker SPIN , 1997, IEEE Trans. Software Eng..

[108]  Jean-Eric Pin,et al.  Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.

[109]  P. Dangerfield Logic , 1996, Aristotle and the Stoics.

[110]  Antonio Restivo,et al.  Monadic Second-Order Logic Over Rectangular Pictures and Recognizability by Tiling Systems , 1996, Inf. Comput..

[111]  M. Paterson,et al.  A deterministic subexponential algorithm for solving parity games , 2006, SODA 2006.

[112]  J. R. Büchi Decision methods in the theory of ordinals , 1965 .

[113]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[114]  Igor Walukiewicz,et al.  Pushdown Processes: Games and Model-Checking , 1996, Inf. Comput..

[115]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[116]  Gareth S. Rohde,et al.  Alternating automata and the temporal logic of ordinals , 1997 .

[117]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[118]  Julian C. Bradfield The Modal µ-Calculus Alternation Hierarchy is Strict , 1998, Theor. Comput. Sci..

[119]  John Doner,et al.  Tree Acceptors and Some of Their Applications , 1970, J. Comput. Syst. Sci..

[120]  Joseph Y. Halpern,et al.  Decision procedures and expressiveness in the temporal logic of branching time , 1982, STOC '82.

[121]  Igor Walukiewicz,et al.  Monadic Second Order Logic on Tree-Like Structures , 1996, STACS.

[122]  E. Allen Emerson,et al.  The Propositional Mu-Calculus is Elementary , 1984, ICALP.

[123]  Damian Niwinski On Fixed-Point Clones (Extended Abstract) , 1986, ICALP.

[124]  Filip Murlak,et al.  On the topological complexity of tree languages , 2008, Logic and Automata.