Preparation and characterization of B4C coatings for advanced research light sources

The challenging specifications for long X-ray mirrors for upcoming free-electron lasers can be achieved, especially for maintaining below 2 nm peak-to-valley shape error along the optical aperture of approximately 1 m-long mirrors.

[1]  J. Chalupský,et al.  Damage of amorphous carbon induced by soft x-ray femtosecond pulses above and below the critical angle , 2009 .

[2]  R. London,et al.  Interaction of short x-ray pulses with low-Z x-ray optics materials at the LCLS free-electron laser. , 2010, Optics express.

[3]  Per F. Peterson,et al.  Modeling and Experiments of X-Ray Ablation of National Ignition Facility First Wall Materials , 1996 .

[4]  M. Ohring The Materials Science of Thin Films , 1991 .

[5]  M. Chhowalla,et al.  Behavior of disordered boron carbide under stress. , 2006, Physical review letters.

[6]  K. Ebihara,et al.  Preparation of boron carbide thin film by pulsed KrF excimer laser deposition process , 2002 .

[7]  J. Gaudin,et al.  Picosecond time-resolved x-ray refectivity of a laser-heated amorphous carbon film , 2011 .

[8]  F. Salmassi,et al.  Optical constants of magnetron-sputtered boron carbide thin films from photoabsorption data in the range 30 to 770 eV. , 2008, Applied optics.

[9]  J. Andre,et al.  Damages to B4C/W multilayer mirrors by intense soft x‐ray bursts , 1996 .

[10]  Frank Siewert,et al.  Development of x-ray optics for advanced research light sources , 2011, Optics + Optoelectronics.

[11]  Massimo Altarelli,et al.  The European X-ray free-electron laser facility in Hamburg , 2011 .

[12]  H. Wabnitz,et al.  The soft x-ray free-electron laser FLASH at DESY: beamlines, diagnostics and end-stations , 2009 .

[13]  David L. Windt,et al.  IMD—software for modeling the optical properties of multilayer films , 1998 .

[14]  H. Sinn,et al.  Comparative study of the X-ray reflectivity and in-depth profile of a-C, B₄C and Ni coatings at 0.1-2 keV. , 2015, Journal of synchrotron radiation.

[15]  F Siewert Metrology, Mirrors and Gratings – Advances and Challenges in Synchrotron Optics , 2013 .

[16]  Frank Siewert,et al.  Single-layer mirrors for advanced research light sources , 2010 .

[17]  Anton Barty,et al.  Predicting the coherent X-ray wavefront focal properties at the Linac Coherent Light Source (LCLS) X-ray free electron laser. , 2009, Optics express.

[18]  Sébastien Boutet,et al.  The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) , 2010 .

[19]  M. Taniwaki,et al.  Laser ablation of boron carbide : thin-film deposition and plume analysis , 2001 .

[20]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[21]  Damage threshold of amorphous carbon mirror for 177 eV FEL radiation , 2011 .

[22]  Yiao-Tee Hsia,et al.  Process–property relationship of boron carbide thin films by magnetron sputtering , 2004 .

[23]  Eric M. Gullikson,et al.  Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors , 2009, Optics + Optoelectronics.

[24]  Carsten Michaelsen,et al.  Characterization of amorphous carbon films as total-reflection mirrors for XUV free-electron lasers , 2002, SPIE Optics + Photonics.

[25]  F. Thévenot,et al.  Boron carbide ― a comprehensive review , 1990 .

[26]  J. Chalupský,et al.  Fluence thresholds for grazing incidence hard x-ray mirrors , 2015 .

[27]  Giovanni Sostero,et al.  A hybrid active optical system for wave front preservation and variable focal distance , 2010 .

[28]  S. Ulrich,et al.  Subplantation effect in magnetron sputtered superhard boron carbide thin films , 1998 .

[29]  O. Conde,et al.  Deposition of boron carbide by laser CVD: a comparison with thermodynamic predictions , 1997 .

[30]  Andrew G. Glen,et al.  APPL , 2001 .

[31]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[32]  Frank Siewert,et al.  Design of soft x-ray gratings for free electron lasers: from specification to characterization , 2013, Optical Metrology.

[33]  Eric M. Gullikson,et al.  Development, characterization and experimental performance of x-ray optics for the LCLS free-electron laser , 2008, Optical Engineering + Applications.

[34]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[35]  T. Ishikawa,et al.  A compact X-ray free-electron laser emitting in the sub-ångström region , 2012, Nature Photonics.

[36]  M. Mckernan Magnetron sputter deposition of boron and boron carbide , 1991 .

[37]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[38]  Liubov Samoylova,et al.  Conceptual Design Report: X-Ray Optics and Beam Transport , 2011 .

[39]  R. Lemaster,et al.  Laser physical vapor deposition of boron carbide films to enhance cutting tool performance , 2009 .

[40]  H. Padmore,et al.  X-ray Optics for BES Light Source Facilities , 2013 .

[41]  T. J. McCarville,et al.  Opto-mechanical design considerations for the Linac Coherent Light Source x-ray mirror system , 2008, Optical Engineering + Applications.

[42]  M. Pedrozzi,et al.  Coherent science at the SwissFEL x-ray laser , 2010 .

[43]  G. Falkenberg,et al.  On the characterization of ultra-precise X-ray optical components: advances and challenges in ex situ metrology , 2014, Journal of synchrotron radiation.

[44]  F. d'Heurle,et al.  Aluminum films deposited by rf sputtering , 1970 .