Reverse engineering a protein: the mechanochemistry of ATP synthase.

ATP synthase comprises two rotary motors in one. The F(1) motor can generate a mechanical torque using the hydrolysis energy of ATP. The F(o) motor generates a rotary torque in the opposite direction, but it employs a transmembrane proton motive force. Each motor can be reversed: The F(o) motor can drive the F(1) motor in reverse to synthesize ATP, and the F(1) motor can drive the F(o) motor in reverse to pump protons. Thus ATP synthase exhibits two of the major energy transduction pathways employed by the cell to convert chemical energy into mechanical force. Here we show how a physical analysis of the F(1) and F(o) motors can provide a unified view of the mechanochemical principles underlying these energy transducers.

[1]  P. Dimroth,et al.  Primary sodium ion translocating enzymes. , 1997, Biochimica et biophysica acta.

[2]  U. Matthey,et al.  Mode of interaction of the single a subunit with the multimeric c subunits during the translocation of the coupling ions by F1F0 ATPases , 1998, The EMBO journal.

[3]  T. Elston,et al.  Force generation in RNA polymerase. , 1998, Biophysical journal.

[4]  Mark J. Schnitzer,et al.  Kinesin hydrolyses one ATP per 8-nm step , 1997, Nature.

[5]  R. Vale,et al.  Switches, latches, and amplifiers: common themes of G proteins and molecular motors , 1996, The Journal of cell biology.

[6]  A. Mulkidjanian,et al.  Transient accumulation of elastic energy in proton translocating ATP synthase , 1999, FEBS letters.

[7]  R J Fletterick,et al.  The design plan of kinesin motors. , 1997, Annual review of cell and developmental biology.

[8]  R. Nakamoto,et al.  Mechanism of energy coupling in the FOF1-ATP synthase: the uncoupling mutation, gammaM23K, disrupts the use of binding energy to drive catalysis. , 1997, Biochemistry.

[9]  H. Berg,et al.  Torque generated by the bacterial flagellar motor close to stall. , 1996, Biophysical journal.

[10]  P. Dimroth,et al.  A triple mutation in the a subunit of the Escherichia coli/Propionigenium modestum F1Fo ATPase hybrid causes a switch from Na+ stimulation to Na+ inhibition. , 1998, Biochemistry.

[11]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[12]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[13]  P. Dimroth,et al.  Voltage‐generated torque drives the motor of the ATP synthase , 1998, The EMBO journal.

[14]  J. Weber,et al.  Catalytic mechanism of F1-ATPase. , 1997, Biochimica et biophysica acta.

[15]  P. Dimroth,et al.  ATP synthesis by the F1Fo ATP synthase of Escherichia coli is obligatorily dependent on the electric potential , 1998, FEBS letters.

[16]  George Oster,et al.  Energy transduction in ATP synthase , 1998, Nature.

[17]  George Oster,et al.  Energy transduction in the F1 motor of ATP synthase , 1998, Nature.

[18]  M. Girvin,et al.  Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase. , 1998, Biochemistry.

[19]  M. Saraste,et al.  FEBS Lett , 2000 .

[20]  Kurt Thorn,et al.  Staying on Track: Common Features of DNA Helicases and Microtubule Motors , 1998, Cell.

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  R. Nakamoto,et al.  Energy Coupling, Turnover, and Stability of the F0F1 ATP Synthase Are Dependent on the Energy of Interaction between γ and β Subunits* , 1997, The Journal of Biological Chemistry.

[23]  Steven M. Block,et al.  Transcription Against an Applied Force , 1995, Science.

[24]  Kazuhiko Kinosita,et al.  F1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120° Steps , 1998, Cell.

[25]  Roger Cooke,et al.  Crystal structure of the motor domain of the kinesin-related motor ncd , 1996, Nature.

[26]  W. Allison F1-ATPase: A Molecular Motor That Hydrolyzes ATP with Sequential Opening and Closing of Catalytic Sites Coupled to Rotation of Its γ Subunit , 1998 .

[27]  Jan Pieter Abrahams,et al.  The crystal structure of the nucleotide-free α3β3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer , 1997 .

[28]  P. Boyer,et al.  The binding change mechanism for ATP synthase--some probabilities and possibilities. , 1993, Biochimica et biophysica acta.

[29]  H. Berg,et al.  Torque generated by the flagellar motor of Escherichia coli. , 1993, Biophysical journal.

[30]  Michelle D. Wang,et al.  Force and velocity measured for single molecules of RNA polymerase. , 1998, Science.

[31]  P. Boyer ATP synthase--past and future. , 1998, Biochimica et biophysica acta.

[32]  S. Block Real engines of creation , 1997, Nature.

[33]  U. Gerike,et al.  Molecular basis for the coupling ion selectivity of F1F0 ATP synthases: probing the liganding groups for Na+ and Li+ in the c subunit of the ATP synthase from Propionigenium modestum. , 1997, Biochemistry.

[34]  R. H. Fillingame,et al.  Arrangement of the Multicopy H+-translocating Subunit c in the Membrane Sector of the Escherichia coliF1F0 ATP Synthase* , 1998, The Journal of Biological Chemistry.

[35]  P. Boyer The ATP synthase--a splendid molecular machine. , 1997, Annual review of biochemistry.

[36]  T. Hamamoto,et al.  Intramolecular rotation in ATP synthase: dynamic and crystallographic studies on thermophilic F1. , 1997, Biochemical and biophysical research communications.

[37]  A. E. Senior Catalytic sites ofEscherichia coli F1-ATPase , 1992, Journal of bioenergetics and biomembranes.

[38]  H. Berg,et al.  Torque generated by the flagellar motor of Escherichia coli while driven backward. , 1999, Biophysical journal.

[39]  C S Peskin,et al.  Cellular motions and thermal fluctuations: the Brownian ratchet. , 1993, Biophysical journal.

[40]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[41]  Kazuhiko Kinosita,et al.  Direct Observation of the Rotation of ε Subunit in F1-ATPase* , 1998, The Journal of Biological Chemistry.

[42]  T. Hamamoto,et al.  The energy transmission in ATP synthase: From the γ-c rotor to the α3β3 oligomer fixed by OSCP-b stator via the βDELSEED sequence , 1996 .

[43]  J. Happel,et al.  Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .