Statistical shape analysis for face movement manifold modeling

The inter-frame information for analyzing human face movement manifold is modeled by the statistical shape theory. Using the Riemannian geometry principles, we map a sequence of face shapes to a unified tangent space and obtain a curve corresponding to the face movement. The experimental results show that the face movement sequence forms a trajectory in a complex tangent space. Furthermore, the extent and type of face expression could be depicted as the range and direction of the curve. This represents a novel approach for face movement classification using shape-based analysis.

[1]  Simon Baker,et al.  Active Appearance Models Revisited , 2004, International Journal of Computer Vision.

[2]  K. Mardia,et al.  ‘Shape, Procrustes tangent projections and bilateral symmetry’ , 2001 .

[3]  David G. Kendall,et al.  Shape & Shape Theory , 1999 .

[4]  C. Taylor,et al.  Active shape models - 'Smart Snakes'. , 1992 .

[5]  Changbo Hu,et al.  Manifold of facial expression , 2003, 2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443).

[6]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[7]  Daijin Kim,et al.  A Natural Facial Expression Recognition Using Differential-AAM and k-NNS , 2008, 2008 Tenth IEEE International Symposium on Multimedia.

[8]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[9]  David J. Fleet,et al.  Multifactor Gaussian process models for style-content separation , 2007, ICML '07.

[10]  A. Elgammal,et al.  Separating style and content on a nonlinear manifold , 2004, CVPR 2004.

[11]  Catalin-Daniel Caleanu,et al.  Nonlinear Shape-Texture Manifold Learning , 2010, IEICE Trans. Inf. Syst..

[12]  I. Dryden,et al.  Shape-space smoothing splines for planar landmark data , 2007 .

[13]  H. Sebastian Seung,et al.  The Manifold Ways of Perception , 2000, Science.

[14]  Gérard G. Medioni,et al.  3D face tracking and expression inference from a 2D sequence using manifold learning , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  D. Kendall A Survey of the Statistical Theory of Shape , 1989 .

[16]  Remco C. Veltkamp,et al.  State of the Art in Shape Matching , 2001, Principles of Visual Information Retrieval.