A hydrocode equation of state for SiO2

The thermodynamic properties of SiO2 are approximated over a range of pressures and temperatures important under the extreme conditions achieved in impacts at typical solar system velocities from 5 to about 70 km/s. The liquid/vapor phase curve and critical point of SiO2 are computed using the equation of state (EOS) program ANEOS. To achieve this goal, two shortcomings of ANEOS are corrected. ANEOS, originally developed at Sandia National Laboratories to describe metals, treats the vapor phase as a monatomic mixture of atoms, rather than molecular clusters. It also assumes a Morse potential for the expanded solid state. Neither of these assumptions is accurate for geologic materials, such as SiO2, that contain molecular clusters in the vapor phase and are better described by a Mie-type potential in the solid state. Using the updates described here, an EOS adequate for numerical hydrocode computations is constructed that agrees well with shock data at pressures up to at least 600 GPa and temperatures up to 50,000 K. This EOS also gives a good representation of the liquid/vapor transition at much lower pressures and temperatures. The estimated critical point parameters for SiO2 are Pc = 0.19 GPa, Tc = 5400K, ρc = 550 kg/m^3.

[1]  S. L. Thompson,et al.  Improvements in the CHART D radiation-hydrodynamic code III: revised analytic equations of state , 1974 .

[2]  S. Kieffer,et al.  Emplacement of Cretaceous-Tertiary Boundary Shocked Quartz from Chicxulub Crater , 1995, Science.

[3]  D. Chapman,et al.  Vapor pressure of tektite glass and its bearing on tektite trajectories determined from aerodynamic analysis , 1966 .

[4]  I. Barin Thermochemical data of pure substances , 1989 .

[5]  Henry Hidalgo,et al.  Ablation of Glassy Material Around Blunt Bodies of Revolution , 1960 .

[6]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[7]  S. L. Thompson ANEOS analytic equations of state for shock physics codes input manual , 1990 .

[8]  B. Zamyshlyaev,et al.  Spalling rate in a solid medium subjected to a strong shock wave , 1974 .

[9]  Falko Langenhorst,et al.  Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience* , 1996 .

[10]  Charles E. Anderson,et al.  An overview of the theory of hydrocodes , 1987 .

[11]  B. Glass,et al.  SPHERULE LAYERS—RECORDS OF ANCIENT IMPACTS , 2004 .

[12]  David A. Young,et al.  Critical Point of Metals from the van der Waals Model , 1971 .

[13]  D. L. Anderson Equations of State of Solids for Geophysics and Ceramic Science [Book Review] , 1996 .

[14]  Russell J. Hemley,et al.  High-pressure behavior of silica , 1994 .

[15]  B. Mysen,et al.  Condensation, evaporation, melting, and crystallization in the primitive solar nebula; experimental data in the system MgO-SiO 2 -H 2 to 1.0X10 (super -9) bar and 1870 degrees C with variable oxygen fugacity , 1988 .

[16]  J. H. Tillotson METALLIC EQUATIONS OF STATE FOR HYPERVELOCITY IMPACT , 1962 .

[17]  Thomas J. Ahrens,et al.  Shock melting and vaporization of lunar rocks and minerals , 1972 .

[18]  Harold L. Schick,et al.  A Thermodynamic Analysis of the High-temperature Vaporization Properties of Silica. , 1960 .

[19]  L. Walter,et al.  Vapor pressure and vapor fractionation of silicate melts of tektite composition , 1964 .

[20]  H. Melosh,et al.  Ignition of global wildfires at the Cretaceous/Tertiary boundary , 1990, Nature.

[21]  秋本 俊一 V. N. Zharkov and V. A. Kalinin: Equations of State for Solids at High Pressures and Temperatures, Consultants Bureau, New York and London, 1971, 257ページ, 27×21cm, 13,000円. , 1972 .

[22]  Gregory A. Lyzenga,et al.  Shock temperatures of SiO2 and their geophysical implications , 1983 .

[23]  L. Schaefer,et al.  A thermodynamic model of high temperature lava vaporization on Io , 2004 .

[24]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[25]  Introduction to the Physics of the Earth's Interior , 1991 .

[26]  C. Kittel Introduction to solid state physics , 1954 .

[27]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[28]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[29]  S. Marsh Lasl Shock Hugoniot Data , 1980 .

[30]  Jerry Wackerle,et al.  Shock‐Wave Compression of Quartz , 1962 .

[31]  P. McMillan,et al.  High‐pressure behavior of anorthite: Compression and amorphization , 1997 .

[32]  S. Kieffer,et al.  Isentropic decompression of fluids from crustal and mantle pressures , 1979 .

[33]  Falko Langenhorst,et al.  Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory* , 1994 .

[34]  K. Denbigh,et al.  The Principles of Chemical Equilibrium , 1956 .

[35]  Tracy K. P. Gregg,et al.  Volcanic eruptions on mid‐ocean ridges: New evidence from the superfast spreading East Pacific Rise, 17°–19°S , 2002 .

[36]  D. Kring,et al.  Trajectories and distribution of material ejected from the Chicxulub impact crater: Implications for postimpact wildfires , 2002 .

[37]  G. Mie Zur kinetischen Theorie der einatomigen Körper , 1903 .

[38]  Brian J. Skinner,et al.  SECTION 6: THERMAL EXPANSION , 1966 .

[39]  S. Shornikov,et al.  MASS SPECTROMETRIC STUDY OF VAPORIZATION AND THERMODYNAMIC PROPERTIES OF SILICON DIOXIDE. I. COMPOSITION OF THE GAS PHASE AND PARTIAL VAPOR PRESSURES OF THE MOLECULAR FORMS OVER SILICON DIOXIDE , 1998 .