Existence of Transport Coefficients

We discuss the rigorous results on the existence of transport coefficients in the (deterministic) dynamical systems. This fundamental problem of the nonequilibrium statistical mechanics has been so far solved only for some models of the Lorentz gas and for some systems of hard spheres. The natural hierarchy of models based on a number of moving particles in the system allows to determine the simplest models where the corresponding transport coefficients may exist. It also suggests a strategy for the future studies in this area.

[1]  L. Young,et al.  STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY , 1998 .

[2]  W. G. Hoover molecular dynamics , 1986, Catalysis from A to Z.

[3]  L. Bunimovich,et al.  Markov Partitions for dispersed billiards , 1980 .

[4]  J. McLennan Introduction to nonequilibrium statistical mechanics , 1989 .

[5]  Y. Sinai,et al.  Dynamical systems with elastic reflections , 1970 .

[6]  L. Bunimovich,et al.  Viscosity for a periodic two disk fluid: An existence proof , 1996 .

[7]  L. Bunimovich,et al.  Markov partitions for two-dimensional hyperbolic billiards , 1990 .

[8]  N. Chernov Statistical properties of the periodic Lorentz gas. Multidimensional case , 1994 .

[9]  Ergodic properties of the lorentz gas , 1979 .

[10]  ON A FUNDAMENTAL THEOREM IN THE THEORY OF DISPERSING BILLIARDS , 1973 .

[11]  N. Chernov,et al.  Limit theorems and Markov approximations for chaotic dynamical systems , 1995 .

[12]  I. Ibragimov,et al.  Independent and stationary sequences of random variables , 1971 .

[13]  B. Alder,et al.  Studies in Molecular Dynamics. VIII. The Transport Coefficients for a Hard-Sphere Fluid , 1970 .

[14]  R. Balescu Equilibrium and Nonequilibrium Statistical Mechanics , 1991 .

[15]  J. Erpenbeck,et al.  Molecular Dynamics Techniques for Hard-Core Systems , 1977 .

[16]  A mechanical definition of the thermodynamic pressure , 1975 .

[17]  Giovanni Gallavotti,et al.  Billiards and Bernoulli schemes , 1974 .

[18]  Leonid A. Bunimovich,et al.  Statistical properties of lorentz gas with periodic configuration of scatterers , 1981 .

[19]  Leonid A. Bunimovich,et al.  Statistical properties of two-dimensional hyperbolic billiards , 1991 .

[20]  G. Belitskii Invariant normal forms of formal series , 1979 .

[21]  G. Eyink,et al.  Steady-state electrical conduction in the periodic Lorentz gas , 1993, chao-dyn/9302003.

[22]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[23]  P. Bleher Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon , 1992 .