Randomized Sampling for Basis Function Construction in Generalized Finite Element Methods

In the context of generalized finite element methods for elliptic equations with rough coefficients $a(x)$, efficiency and accuracy of the numerical method depend critically on the use of appropriate basis functions. This work explores several random sampling strategies for construction of basis functions, and proposes a quantitative criterion to analyze and compare these sampling strategies. Numerical evidence shows that the optimal basis functions can be well approximated by a random projection of generalized eigenvalue problem onto subspace of $a$-harmonic functions.

[1]  G. Papanicolaou Asymptotic analysis of transport processes , 1975 .

[2]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[3]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[4]  W. A. Light n -WIDTHS IN APPROXIMATION THEORY (Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, Band 7) , 1985 .

[5]  J. Banavar,et al.  The Heterogeneous Multi-Scale Method , 1992 .

[6]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[7]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[8]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[9]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[10]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[11]  Xingye Yue,et al.  Numerical methods for multiscale elliptic problems , 2006, J. Comput. Phys..

[12]  H. Owhadi,et al.  Metric‐based upscaling , 2007 .

[13]  Mario Bebendorf,et al.  Why Finite Element Discretizations Can Be Factored by Triangular Hierarchical Matrices , 2007, SIAM J. Numer. Anal..

[14]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[15]  Robert Lipton,et al.  Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..

[16]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[17]  E Weinan,et al.  Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation , 2011, J. Comput. Phys..

[18]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[19]  H. Owhadi,et al.  Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.

[20]  Houman Owhadi,et al.  Bayesian Numerical Homogenization , 2014, Multiscale Model. Simul..

[21]  W. Hackbusch,et al.  Hierarchical Matrices: Algorithms and Analysis , 2015 .

[22]  Victor M. Calo,et al.  Randomized Oversampling for Generalized Multiscale Finite Element Methods , 2014, Multiscale Model. Simul..

[23]  Robert Lipton,et al.  Uncertain loading and quantifying maximum energy concentration within composite structures , 2016, J. Comput. Phys..

[24]  Thomas Y. Hou,et al.  Sparse operator compression of higher-order elliptic operators with rough coefficients , 2017, Research in the Mathematical Sciences.