A linear programming based heuristic framework for min-max regret combinatorial optimization problems with interval costs

A heuristic framework for a class of robust optimization problems is proposed.The heuristic framework explores dual information.The heuristic is successfully applied to solve two robust optimization problems.The heuristic is able to outperform a widely used 2-approximation procedure.A robust optimization version of the restricted shortest path problem is introduced. This work deals with a class of problems under interval data uncertainty, namely interval robust-hard problems, composed of interval data min-max regret generalizations of classical NP-hard combinatorial problems modeled as 0-1 integer linear programming problems. These problems are more challenging than other interval data min-max regret problems, as solely computing the cost of any feasible solution requires solving an instance of an NP-hard problem. The state-of-the-art exact algorithms in the literature are based on the generation of a possibly exponential number of cuts. As each cut separation involves the resolution of an NP-hard classical optimization problem, the size of the instances that can be solved efficiently is relatively small. To smooth this issue, we present a modeling technique for interval robust-hard problems in the context of a heuristic framework. The heuristic obtains feasible solutions by exploring dual information of a linearly relaxed model associated with the classical optimization problem counterpart. Computational experiments for interval data min-max regret versions of the restricted shortest path problem and the set covering problem show that our heuristic is able to find optimal or near-optimal solutions and also improves the primal bounds obtained by a state-of-the-art exact algorithm and a 2-approximation procedure for interval data min-max regret problems.

[1]  Hande Yaman,et al.  The robust spanning tree problem with interval data , 2001, Oper. Res. Lett..

[2]  Igor Averbakh,et al.  The Robust Set Covering Problem with interval data , 2011, Annals of Operations Research.

[3]  M. D. Devine,et al.  A Modified Benders' Partitioning Algorithm for Mixed Integer Programming , 1977 .

[4]  Daniel Vanderpooten,et al.  Min-max and min-max regret versions of combinatorial optimization problems: A survey , 2009, Eur. J. Oper. Res..

[5]  Roberto Montemanni,et al.  An exact algorithm for the robust shortest path problem with interval data , 2004, Comput. Oper. Res..

[6]  Christodoulos A. Floudas Generalized Benders Decomposition , 2009, Encyclopedia of Optimization.

[7]  Natashia Boland,et al.  Improved preprocessing, labeling and scaling algorithms for the Weight‐Constrained Shortest Path Problem , 2003, Networks.

[8]  Thomas L. Magnanti,et al.  Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria , 1981, Oper. Res..

[9]  Tim Hesterberg,et al.  Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control , 2004, Technometrics.

[10]  Refael Hassin,et al.  Approximation Schemes for the Restricted Shortest Path Problem , 1992, Math. Oper. Res..

[11]  J. Hooker,et al.  Logic-based Benders decomposition , 2003 .

[12]  Igor Averbakh,et al.  Interval data minmax regret network optimization problems , 2004, Discret. Appl. Math..

[13]  Luigi Di Puglia Pugliese,et al.  A survey of resource constrained shortest path problems: Exact solution approaches , 2013, Networks.

[14]  Hande Yaman,et al.  The Robust Shortest Path Problem with Interval Data , 2012 .

[15]  Adam Kasperski,et al.  Discrete Optimization with Interval Data - Minmax Regret and Fuzzy Approach , 2008, Studies in Fuzziness and Soft Computing.

[16]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[17]  Xiaoyan Zhu,et al.  A three-stage approach for the resource-constrained shortest path as a sub-problem in column generation , 2012, Comput. Oper. Res..

[18]  Klaudia Frankfurter Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .

[19]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[20]  Gang Yu,et al.  On the Max-Min 0-1 Knapsack Problem with Robust Optimization Applications , 1996, Oper. Res..

[21]  Gerhard J. Woeginger,et al.  Pinpointing the complexity of the interval min-max regret knapsack problem , 2010, Discret. Optim..

[22]  Matteo Fischetti,et al.  Algorithms for the Set Covering Problem , 2000, Ann. Oper. Res..

[23]  Igor Averbakh Computing and minimizing the relative regret in combinatorial optimization with interval data , 2005, Discret. Optim..

[24]  Matteo Fischetti,et al.  Local branching , 2003, Math. Program..

[25]  Matteo Fischetti,et al.  A note on the selection of Benders’ cuts , 2010, Math. Program..

[26]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[27]  Roberto Montemanni,et al.  A Benders decomposition approach for the robust spanning tree problem with interval data , 2006, Eur. J. Oper. Res..

[28]  Jon Crowcroft,et al.  Quality-of-Service Routing for Supporting Multimedia Applications , 1996, IEEE J. Sel. Areas Commun..

[29]  Thiago F. Noronha,et al.  An integer linear programming formulation and heuristics for the minmax relative regret robust shortest path problem , 2014, Journal of Global Optimization.

[30]  Eduardo Conde,et al.  On a constant factor approximation for minmax regret problems using a symmetry point scenario , 2012, Eur. J. Oper. Res..

[31]  H. Joksch The shortest route problem with constraints , 1966 .

[32]  James C. Spall,et al.  Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control (Spall, J.C. , 2007 .

[33]  Egon Balas,et al.  On the Set-Covering Problem , 1972, Oper. Res..

[34]  J. Current,et al.  An Improved Solution Algorithm for the Constrained Shortest Path Problem , 2007 .

[35]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[36]  Thiago F. Noronha,et al.  On the Finite Optimal Convergence of Logic-Based Benders' Decomposition in Solving 0-1 Min-Max Regret Optimization Problems with Interval Costs , 2016, ISCO.

[37]  A. Kasperski,et al.  Minimizing maximal regret in discrete optimization problems with interval data , 2004 .

[38]  J. Rosenhead,et al.  Robustness and Optimality as Criteria for Strategic Decisions , 1972 .

[39]  Adam Kasperski,et al.  On the existence of an FPTAS for minmax regret combinatorial optimization problems with interval data , 2007, Oper. Res. Lett..

[40]  Adam Kasperski,et al.  An approximation algorithm for interval data minmax regret combinatorial optimization problems , 2006, Inf. Process. Lett..

[41]  Mitsuhiko Toda,et al.  Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[42]  Igor Averbakh,et al.  On the complexity of a class of combinatorial optimization problems with uncertainty , 2001, Math. Program..

[43]  Nicos Christofides,et al.  An algorithm for the resource constrained shortest path problem , 1989, Networks.

[44]  Y. P. Aneja,et al.  Shortest chain subject to side constraints , 1983, Networks.

[45]  Matteo Fischetti,et al.  Algorithms for railway crew management , 1997, Math. Program..

[46]  Igor Averbakh,et al.  Exact and heuristic algorithms for the interval data robust assignment problem , 2011, Comput. Oper. Res..

[47]  David Avis,et al.  SET COVERING PROBLEMS , 1980 .

[49]  Eduardo Conde,et al.  A 2-approximation for minmax regret problems via a mid-point scenario optimal solution , 2010, Oper. Res. Lett..

[50]  Roberto Montemanni,et al.  The robust shortest path problem with interval data via Benders decomposition , 2005, 4OR.

[51]  Marc Goerigk,et al.  A new bound for the midpoint solution in minmax regret optimization with an application to the robust shortest path problem , 2015, Eur. J. Oper. Res..

[52]  Martine Labbé,et al.  Reduction approaches for robust shortest path problems , 2011, Comput. Oper. Res..

[53]  Pawel Zielinski,et al.  The computational complexity of the relative robust shortest path problem with interval data , 2004, Eur. J. Oper. Res..

[54]  Satish K. Tripathi,et al.  Quality of service based routing: a performance perspective , 1998, SIGCOMM '98.

[55]  Jeffery K. Cochran,et al.  A set covering formulation for agile capacity planning within supply chains , 2005 .

[56]  Manuel Iori,et al.  Heuristic and Exact Algorithms for the Interval Min-Max Regret Knapsack Problem , 2015, INFORMS J. Comput..

[57]  T. F. Noronha,et al.  Coupling scenario-based heuristics to exact methods for the robust weighted set covering problem with interval data* , 2016 .

[58]  Daniel Vanderpooten,et al.  Approximation of min-max and min-max regret versions of some combinatorial optimization problems , 2007, Eur. J. Oper. Res..

[59]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[60]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[61]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[62]  János Barta,et al.  The Robust Traveling Salesman Problem with Interval Data , 2006, Transp. Sci..

[63]  Gabriel Y. Handler,et al.  A dual algorithm for the constrained shortest path problem , 1980, Networks.

[64]  Igor Averbakh,et al.  The Robust (Minmax Regret) Quadratic Assignment Problem with Interval Flows , 2014, INFORMS J. Comput..

[65]  Roberto Montemanni,et al.  A branch and bound algorithm for the robust shortest path problem with interval data , 2004, Oper. Res. Lett..