Creating Three‐Dimensional Polymeric Microstructures by Multi‐Beam Interference Lithography

It is attractive to produce true three‐dimensional (3D) microstructures both rapidly and economically over a large area with negligible defects for a wide range of applications. Multi‐beam interference lithography is one of the promising techniques that can create periodic microstructures in polymers without extensive lithography and etching steps. This review discusses the formation of interference patterns, their dependence on beam parameters, the lithographic process, and the applications to the formation of photonic crystals. Various photoresist systems, including thick films of negative‐tone and positive‐tone photoresists, liquid resins, organic‐inorganic hybrids, and holographic polymer‐dispersed liquid crystals, are also reviewed.

[1]  Gregory Breyta,et al.  Effect of resist components on image spreading during postexposure bake of chemically amplified resists , 2000, Advanced Lithography.

[2]  F. Boey,et al.  Cationic UV cure kinetics for multifunctional epoxies , 2002 .

[3]  Michael J. Brett,et al.  Fabrication of Tetragonal Square Spiral Photonic Crystals , 2002 .

[4]  Peter R. Herman,et al.  Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals , 2005 .

[5]  Yeshaiahu Fainman,et al.  Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write. , 2003, Applied optics.

[6]  L Z Cai,et al.  Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  R. Landers,et al.  Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. , 2002, Biomaterials.

[8]  E. Thomas,et al.  Triply Periodic Bicontinuous Cubic Microdomain Morphologies by Symmetries , 2001 .

[9]  J. Perry,et al.  Ultrabright supramolecular beacons based on the self-assembly of two-photon chromophores on metal nanoparticles. , 2003, Journal of the American Chemical Society.

[10]  S. Nonogaki,et al.  Microlithography Fundamentals in Semiconductor Devices and Fabrication Technology , 1998 .

[11]  Y Boiko,et al.  Polarization-selective switching in holographically formed polymer dispersed liquid crystals. , 2002, Optics letters.

[12]  X. Wang,et al.  Effects of polarization on laser holography for microstructure fabrication. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Anna E Fox,et al.  Holographically formed polymer dispersed liquid crystal films for transmission mode spectrometer applications. , 2007, Applied optics.

[14]  G. Gigli,et al.  Holographic nanopatterning of the organic semiconductor poly(p-phenylene vinylene) , 1998 .

[15]  Theresa S. Mayer,et al.  Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography , 2003 .

[16]  Jang‐Joo Kim,et al.  Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films , 2003 .

[17]  Geoffrey A. Ozin,et al.  The Race for the Photonic Chip: Colloidal Crystal Assembly in Silicon Wafers , 2001 .

[18]  Jane M. Shaw,et al.  Micromachining applications of a high resolution ultrathick photoresist , 1995 .

[19]  D. Weitz,et al.  Electro-optic response and switchable Bragg diffraction for liquid crystals in colloid-templated materials. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  L Z Cai,et al.  All fourteen Bravais lattices can be formed by interference of four noncoplanar beams. , 2002, Optics letters.

[21]  Bradley K. Smith,et al.  A three-dimensional photonic crystal operating at infrared wavelengths , 1998, Nature.

[22]  H. Ono,et al.  Formation of Polarization Gratings and Surface Relief Gratings in Photocrosslinkable Polymer Liquid Crystals by Polarization Holography , 2003 .

[23]  P. J. Bedrossian,et al.  Magnetic force microscopy of single-domain cobalt dots patterned using interference lithography , 1996 .

[24]  J. Qi,et al.  Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals. , 2003, Optics letters.

[25]  Coates,et al.  Crystallography of optical lattices. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[26]  Liang Yuan,et al.  Arrangements of four beams for any Bravais lattice. , 2003, Optics letters.

[27]  Martin Maldovan,et al.  Triply periodic bicontinuous structures through interference lithography: a level-set approach. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Tianyue Yu,et al.  An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. , 2002, Science.

[29]  Kurt Busch,et al.  Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations , 2003 .

[30]  Jun Qi,et al.  Holographically formed polymer dispersed liquid crystal displays , 2004 .

[31]  E. Yablonovitch,et al.  Photonic band structure: The face-centered-cubic case. , 1989, Physical review letters.

[32]  Theresa S. Mayer,et al.  Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe , 2001 .

[33]  A. Abbott Cell culture: Biology's new dimension , 2003, Nature.

[34]  Mischa Megens,et al.  Functional Biomimetic Microlens Arrays with Integrated Pores , 2005 .

[35]  Shu Yang,et al.  Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures , 2004 .

[36]  Mischa Megens,et al.  Creating Periodic Three-Dimensional Structures by Multibeam Interference of Visible Laser , 2002 .

[37]  Kalaichelvi Saravanamuttu,et al.  Sol−Gel Organic−Inorganic Composites for 3-D Holographic Lithography of Photonic Crystals with Submicron Periodicity , 2003 .

[38]  Seung-Man Yang,et al.  Patterned polymer photonic crystals using soft lithography and holographic lithography , 2005 .

[39]  H. Miyazaki,et al.  Microassembly of semiconductor three-dimensional photonic crystals , 2003, Nature materials.

[40]  R. G. Denning,et al.  Fabrication of photonic crystals for the visible spectrum by holographic lithography , 2000, Nature.

[41]  Roberto Cingolani,et al.  Nanopatterning of organic and inorganic materials by holographic lithography and plasma etching , 2000 .

[42]  Michael J. Sailor,et al.  Polymer Replicas of Photonic Porous Silicon for Sensing and Drug Delivery Applications , 2003, Science.

[43]  R. Baughman,et al.  Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment. , 2001, Physical review letters.

[44]  David N. Sharp,et al.  Holographic photonic crystals with diamond symmetry , 2003 .

[45]  A. Ahluwalia,et al.  Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. , 2003, Biomaterials.

[46]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[47]  Alexei Chelnokov,et al.  Near-infrared Yablonovite-like photonic crystals by focused-ion-beam etching of macroporous silicon , 2000 .

[48]  Satoru Shoji,et al.  Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference , 2003 .

[49]  Steven G. Johnson,et al.  Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap , 2000 .

[50]  E. Costard,et al.  Fabrication of a 2D photonic bandgap by a holographic method , 1997 .

[51]  M. Wegener,et al.  Direct laser writing of three-dimensional photonic-crystal templates for telecommunications , 2004, Nature materials.

[52]  L. Kuipers,et al.  Large area photonic crystal slabs for visible light with waveguiding defect structures: Fabrication with focused ion beam assisted laser interference lithography , 2001 .

[53]  Ovidiu Toader,et al.  Photonic band gap architectures for holographic lithography. , 2004, Physical review letters.

[54]  Wing Yim Tam,et al.  Three-dimensional photonic crystals fabricated by visible light holographic lithography , 2003 .

[55]  Courtois,et al.  Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials. , 1993, Physical review letters.

[56]  W. Michael Korn,et al.  Disruption of 3D tissue integrity facilitates adenovirus infection by deregulating the coxsackievirus and adenovirus receptor , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Satoru Shoji,et al.  Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin , 2000 .

[58]  G. Crawford,et al.  Holographic photonic crystals , 2004 .

[59]  J. Sturm,et al.  On-chip natural assembly of silicon photonic bandgap crystals , 2001, Nature.

[60]  Eli Yablonovitch,et al.  Two‐Photon Photographic Production of Three‐Dimensional Metallic Structures within a Dielectric Matrix , 2000 .

[61]  Douglas C. Neckers,et al.  A Visible Light Initiating System for Free Radical Promoted Cationic Polymerization , 1994 .

[62]  G. Spalding,et al.  Computer-generated holographic optical tweezer arrays , 2000, cond-mat/0008414.

[63]  A. Polman,et al.  Materials Science Aspects of Photonic Crystals , 2001 .

[64]  Martin Maldovan,et al.  Diamond-structured photonic crystals , 2004, Nature materials.

[65]  Alfredo M. Morales,et al.  Microfabricated Deposition Nozzles for Direct‐Write Assembly of Three‐Dimensional Periodic Structures , 2005 .

[66]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[67]  N. Clark,et al.  Electro-optic Behavior of Liquid-Crystal-Filled Silica Opal Photonic Crystals , 2001 .

[68]  Carlos E Semino,et al.  Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. , 2003, Differentiation; research in biological diversity.

[69]  Steven J. Holmes,et al.  Negative photoresists for optical lithography , 1997, IBM J. Res. Dev..

[70]  I. Zein,et al.  Fused deposition modeling of novel scaffold architectures for tissue engineering applications. , 2002, Biomaterials.

[71]  Kevin Robbie,et al.  Advanced techniques for glancing angle deposition , 1998 .

[72]  Masanori Ozaki,et al.  Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal , 1999 .

[73]  Seth R. Marder,et al.  Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication , 1999, Nature.

[74]  M. J. Brett,et al.  Sculptured thin films and glancing angle deposition: Growth mechanics and applications , 1997 .

[75]  D. Grier,et al.  Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. , 2004, Optics express.

[76]  Li Wang,et al.  Multiple-beam interference lithography with electron beam written gratings , 2002 .

[77]  George M. Whitesides,et al.  Directed Self‐Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field , 2005 .

[78]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[79]  Theresa S. Mayer,et al.  Direct fabrication of two-dimensional titania arrays using interference photolithography , 2001 .

[80]  O. Velev,et al.  Two-dimensional crystallization of microspheres by a coplanar AC electric field. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[81]  J. Qi,et al.  Two-dimensional tunable photonic crystal formed in a liquid-crystal/polymer composite: Threshold behavior and morphology , 2003 .

[82]  Vincent P. Tondiglia,et al.  Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals , 2001 .

[83]  Steven R. J. Brueck,et al.  Multiple‐exposure interferometric lithography , 1993 .

[84]  L. V. Natarajan,et al.  Holographic Polymer-Dispersed Liquid Crystals (H-PDLCs)1 , 2000 .

[85]  J. Crivello,et al.  Development of polymeric photosensitizers for photoinitiated cationic polymerization , 2001 .

[86]  Lalgudi V. Natarajan,et al.  Holographic Formation of Electro‐Optical Polymer–Liquid Crystal Photonic Crystals , 2002 .

[87]  J. Lewis,et al.  Microperiodic structures: Direct writing of three-dimensional webs , 2004, Nature.

[88]  G. Stucky,et al.  Silica-Based, Cubic Mesostructures: Synthesis, Characterization and Relevance for Catalysis , 1998 .

[89]  J. Crivello,et al.  Interaction of epoxy and vinyl ethers during photoinitiated cationic polymerization , 1999 .

[90]  M. Sangermano,et al.  Visible and long-wavelength photoinitiated cationic polymerization , 2001 .

[91]  P. Nealey,et al.  Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates , 2003, Nature.

[92]  S. Noda,et al.  Full three-dimensional photonic bandgap crystals at near-infrared wavelengths , 2000, Science.

[93]  James V. Crivello,et al.  Dye‐sensitized photoinitiated cationic polymerization , 1978 .

[94]  C. G. Willson,et al.  Introduction to microlithography , 1994 .

[95]  L. Cai,et al.  What kind of Bravais lattices can be made by the interference of four umbrellalike beams , 2003 .

[96]  J. Lewis,et al.  Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly , 2003, Nature materials.

[97]  Vicki L. Colvin,et al.  From Opals to Optics: Colloidal Photonic Crystals , 2001 .

[98]  Yadong Yin,et al.  Template‐Assisted Self‐Assembly of Spherical Colloids into Complex and Controllable Structures , 2003 .

[99]  Z. Ghassemlooy Microlithography Fundamentals in Semiconductor Devices and Fabrication Technology (Book Review) , 1999 .

[100]  Nikos Hadjichristidis,et al.  Polymer‐Based Photonic Crystals , 2001 .

[101]  Joe Tien,et al.  Molding of three-dimensional microstructures of gels. , 2003, Journal of the American Chemical Society.

[102]  Seung-Man Yang,et al.  Multiple-exposure holographic lithography with phase shift , 2004 .