On Krull's Separation Lemma
暂无分享,去创建一个
[1] A note on the prime ideal theorem , 1989 .
[2] K. Keimel. A unified theory of minimal prime ideals , 1972 .
[3] A. Blass. Prime ideals yield almost maximal ideals , 1987 .
[4] David Pincus. Adding Dependent Choice to the Prime Ideal Theorem , 1977 .
[5] B. Banaschewski,et al. Lattice Aspects of Radical Ideals and Choice Principles , 1985 .
[6] Bernhard Banaschewski,et al. The duality of distributive σ-continuous lattices , 1980 .
[7] S. Vickers. Topology via Logic , 1989 .
[8] M. Erné. DISTRIBUTORS AND WALLMANUFACTURE , 1990 .
[9] B. Banaschewski. Prime elements from prime ideals , 1985 .
[10] Kimmo I. Rosenthal,et al. Constructing locales from quantales , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.
[11] J. D. Halperin,et al. The independence of the axiom of choice from the Boolean prime ideal theorem , 1964 .
[12] J. Rosický,et al. Multiplicative lattices and frames , 1987 .
[13] Shuhao Sun. On separation lemmas , 1992 .
[14] Jimmie D. Lawson,et al. The spectral theory of distributive continuous lattices , 1978 .
[15] K. I. Rosenthal. Quantales and their applications , 1990 .
[16] W. Hodges. Krull Implies Zorn , 1979 .