Quorum sensing-regulated chitin metabolism provides grazing resistance to Vibrio cholerae biofilms

[1]  D. McDougald,et al.  Relative Contributions of Vibrio Polysaccharide and Quorum Sensing to the Resistance of Vibrio cholerae to Predation by Heterotrophic Protists , 2013, PloS one.

[2]  Hélène Touzet,et al.  SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data , 2012, Bioinform..

[3]  Haruo Watanabe,et al.  Role of Shrimp Chitin in the Ecology of Toxigenic Vibrio cholerae and Cholera Transmission , 2011, Front. Microbio..

[4]  Jonathan Livny,et al.  RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. , 2011, Cell host & microbe.

[5]  D. McDougald,et al.  In situ grazing resistance of Vibrio cholerae in the marine environment. , 2011, FEMS microbiology ecology.

[6]  S. Pukatzki,et al.  Vibrio cholerae Requires the Type VI Secretion System Virulence Factor VasX To Kill Dictyostelium discoideum , 2011, Infection and Immunity.

[7]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[8]  D. J. Grimes,et al.  What Genomic Sequence Information Has Revealed About Vibrio Ecology in the Ocean—A Review , 2009, Microbial Ecology.

[9]  T. Ishikawa,et al.  Quorum Sensing Regulation of the Two hcp Alleles in Vibrio cholerae O1 Strains , 2009, PloS one.

[10]  I. Karunasagar,et al.  Quorum sensing negatively regulates chitinase in Vibrio harveyi. , 2009, Environmental microbiology reports.

[11]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[12]  R. Colwell,et al.  Global impact of Vibrio cholerae interactions with chitin. , 2008, Environmental microbiology.

[13]  R. Colwell,et al.  Dual role colonization factors connecting Vibrio cholerae's lifestyles in human and aquatic environments open new perspectives for combating infectious diseases. , 2008, Current opinion in biotechnology.

[14]  D. Gevers,et al.  Conservation of the Chitin Utilization Pathway in the Vibrionaceae , 2007, Applied and Environmental Microbiology.

[15]  M. Collins,et al.  Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[16]  E. Lara,et al.  Secondary Metabolites Help Biocontrol Strain Pseudomonas fluorescens CHA0 To Escape Protozoan Grazing , 2006, Applied and Environmental Microbiology.

[17]  S. Wai,et al.  A Vibrio cholerae protease needed for killing of Caenorhabditis elegans has a role in protection from natural predator grazing. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[18]  R. Colwell,et al.  Toxigenic Vibrio cholerae in the Aquatic Environment of Mathbaria, Bangladesh , 2006, Applied and Environmental Microbiology.

[19]  G. Schoolnik,et al.  Chitin Induces Natural Competence in Vibrio cholerae , 2005, Science.

[20]  F. Azam,et al.  Chitin, Cholera, and Competence , 2005, Science.

[21]  Brooke A. Jude,et al.  A colonization factor links Vibrio cholerae environmental survival and human infection , 2005, Nature.

[22]  D. McDougald,et al.  Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  S. Rice,et al.  Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. , 2005, Environmental microbiology.

[24]  R. Kolter,et al.  Virulence and the Environment: a Novel Role for Vibrio cholerae Toxin-Coregulated Pili in Biofilm Formation on Chitin , 2005, Journal of bacteriology.

[25]  B. S. Srivastava,et al.  Vibrio cholerae persistence in aquatic environments and colonization of intestinal cells: involvement of a common adhesion mechanism. , 2005, FEMS microbiology letters.

[26]  G. Schoolnik,et al.  Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant , 2004, Molecular microbiology.

[27]  John Prenter,et al.  Lethal and sublethal toxicity of ammonia to native, invasive, and parasitised freshwater amphipods. , 2004, Water research.

[28]  S. Roseman,et al.  The Vibrio cholerae chitin utilization program. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Rita R. Colwell,et al.  Reduction of cholera in Bangladeshi villages by simple filtration , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  R. Schulz,et al.  Effects of chronic ammonium and nitrite contamination on the macroinvertebrate community in running water microcosms. , 2001, Water research.

[31]  Jane W. Marsh,et al.  The Mannose-Sensitive Hemagglutinin ofVibrio cholerae Promotes Adherence to Zooplankton , 2001, Applied and Environmental Microbiology.

[32]  P. Watnick,et al.  A Role for the Mannose-Sensitive Hemagglutinin in Biofilm Formation by Vibrio cholerae El Tor , 1999, Journal of bacteriology.

[33]  C. Pruzzo,et al.  Role of Surface Proteins in Vibrio cholerae Attachment to Chitin , 1999, Applied and Environmental Microbiology.

[34]  S. Faruque,et al.  Epidemiology, Genetics, and Ecology of ToxigenicVibrio cholerae , 1998, Microbiology and Molecular Biology Reviews.

[35]  Bjarke Bak Christensen,et al.  In Situ Gene Expression in Mixed-Culture Biofilms: Evidence of Metabolic Interactions between Community Members , 1998, Applied and Environmental Microbiology.

[36]  R. Colwell,et al.  Effect of alum on free-living and copepod-associated Vibrio cholerae O1 and O139 , 1997, Applied and environmental microbiology.

[37]  R. Colwell,et al.  A simple filtration method to remove plankton-associated Vibrio cholerae in raw water supplies in developing countries , 1996, Applied and environmental microbiology.

[38]  R. Colwell,et al.  Coexistence of Vibrio cholerae 01 and 0139 Bengal in plankton in Bangladesh , 1995, The Lancet.

[39]  S. Roseman,et al.  Chitin utilization by marine bacteria. A physiological function for bacterial adhesion to immobilized carbohydrates. , 1991, The Journal of biological chemistry.

[40]  Sheila Sherlock Chronic portal systemic encephalopathy: update 1987. , 1987, Gut.

[41]  R. Colwell,et al.  Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar 01 associated with live copepods in laboratory microcosms , 1984, Applied and environmental microbiology.

[42]  R. Colwell,et al.  Ecological relationships between Vibrio cholerae and planktonic crustacean copepods , 1983, Applied and environmental microbiology.

[43]  L. Cisneros,et al.  Adsorption and growth of Vibrio cholerae on chitin , 1979, Infection and immunity.

[44]  P. Sorgeloos,et al.  Exposure of gnotobiotic Artemia franciscana larvae to abiotic stress promotes heat shock protein 70 synthesis and enhances resistance to pathogenic Vibrio campbellii , 2008, Cell Stress and Chaperones.

[45]  Steven Smriga,et al.  Trophic regulation of Vibrio cholerae in coastal marine waters. , 2006, Environmental microbiology.

[46]  C. Parent,et al.  Signal relay during the life cycle of Dictyostelium. , 2006, Current topics in developmental biology.

[47]  F. Azam,et al.  Microbiology. Chitin, cholera, and competence. , 2005, Science.