Temporal Blending for Adaptive SPH

In this paper, we introduce a fast and consistent smoothed particle hydrodynamics (SPH) technique which is suitable for convection–diffusion simulations of incompressible fluids. We apply our temporal blending technique to reduce the number of particles in the simulation while smoothly changing quantity fields. Our approach greatly reduces the error introduced in the pressure term when changing particle configurations. Compared to other methods, this enables larger integration time‐steps in the transition phase. Our implementation is fully GPU‐based to take advantage of the parallel nature of particle simulations.

[1]  Bedrich Benes,et al.  Hydraulic Erosion Using Smoothed Particle Hydrodynamics , 2009, Comput. Graph. Forum.

[2]  Rüdiger Westermann,et al.  UberFlow: a GPU-based particle engine , 2004, SIGGRAPH '04.

[3]  Simon Green,et al.  Particle Simulation using CUDA , 2010 .

[4]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[5]  Renato Pajarola,et al.  Adaptive Sampling and Rendering of Fluids on the GPU , 2008, VG/PBG@SIGGRAPH.

[6]  Nicolas Cuntz,et al.  Dynamic particle coupling for gpu-based fluid simulation , 2010 .

[7]  Javier Bonet,et al.  Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems , 2007 .

[8]  Markus Gross,et al.  Two-scale particle simulation , 2011, SIGGRAPH 2011.

[9]  Matthias Teschner,et al.  Boundary Handling and Adaptive Time-stepping for PCISPH , 2010, VRIPHYS.

[10]  Diego Rossinelli,et al.  Flow simulations using particles: bridging computer graphics and CFD , 2008, SIGGRAPH '08.

[11]  Donald H. House,et al.  Adaptive Neighbor Pairing for Smoothed Particle Hydrodynamics , 2010, ISVC.

[12]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[13]  N. Mullineux,et al.  Discussion of paper by S. Gallof and B. Kaplan , 1971 .

[14]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[15]  Giovanni Lapenta,et al.  Control of the number of particles in fluid and MHD particle in cell methods , 1995 .

[16]  Renato Pajarola,et al.  Interactive SPH simulation and rendering on the GPU , 2010, SCA '10.

[17]  Matthias Teschner,et al.  A Parallel SPH Implementation on Multi‐Core CPUs , 2011, Comput. Graph. Forum.

[18]  Renato Pajarola,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) , 2022 .

[19]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..

[20]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[21]  Mathieu Desbrun,et al.  Smoothed particles: a new paradigm for animating highly deformable bodies , 1996 .

[22]  Petros Koumoutsakos,et al.  Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows , 2002 .

[23]  F. Robert A. Hopgood,et al.  Single User Workstations , 1983, Comput. Graph. Forum.

[24]  Richard Keiser,et al.  Multiresolution particle-based fluids , 2006 .

[25]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[26]  Renato Pajarola,et al.  Efficient Refinement of Dynamic Point Data , 2007, PBG@Eurographics.

[27]  Marie-Paule Cani,et al.  Space-Time Adaptive Simulation of Highly Deformable Substances , 1999 .

[28]  P. Cleary,et al.  Conduction Modelling Using Smoothed Particle Hydrodynamics , 1999 .

[29]  Philip Dutré,et al.  Mixing Fluids and Granular Materials , 2009, Comput. Graph. Forum.

[30]  Robert Bridson,et al.  Ghost SPH for animating water , 2012, ACM Trans. Graph..

[31]  Andreas Kolb,et al.  Topology-Caching for Dynamic Particle Volume Raycasting , 2010, VMV.

[32]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[33]  J. Trulsen,et al.  Regularized Smoothed Particle Hydrodynamics: A New Approach to Simulating Magnetohydrodynamic Shocks , 2001 .

[34]  Javier Bonet,et al.  A simplified approach to enhance the performance of smooth particle hydrodynamics methods , 2002, Appl. Math. Comput..

[35]  Markus H. Gross,et al.  Particle-based fluid-fluid interaction , 2005, SCA '05.

[36]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[37]  Renato Pajarola,et al.  Time Adaptive Approximate SPH , 2011, VRIPHYS.

[38]  Petros Koumoutsakos,et al.  Vortex Methods with Spatially Varying Cores , 2000 .

[39]  Matthias Teschner,et al.  Direct Forcing for Lagrangian Rigid-Fluid Coupling , 2009, IEEE Transactions on Visualization and Computer Graphics.

[40]  M. Lastiwka,et al.  Adaptive particle distribution for smoothed particle hydrodynamics , 2005 .

[41]  Marie-Paule Cani,et al.  Animating Lava Flows , 1999, Graphics Interface.