Nonlinear Internal Model Control using Local Model Networks

Abstract Local Model Networks represent a nonlinear dynamical system by a set of locally valid submodels across the operating range. Training such feedforward structures involves the combined estimation of the submodel parameters and those of the interpolation functions. The paper describes a new hybrid learning approach for local model networks that uses a combination of singular value decomposition and second order gradient optimization. A new nonlinear Internal Model Control scheme is proposed which has the important property that the controller can be derived analytically. Simulation studies of a pH neutralization process confirm the excellent modelling and control performance using the local model approach.

[1]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[2]  Tor Arne Johansen,et al.  Non-linear predictive control using local models-applied to a batch fermentation process , 1995 .

[3]  George W. Irwin,et al.  A novel neural internal model control structure , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[4]  M. Morari,et al.  Internal Model Control: extension to nonlinear system , 1986 .

[5]  David Lowe,et al.  A Hybrid Optimisation Strategy for Adaptive Feed-Forward Layered Networks , 1988 .

[6]  Richard S. Sutton,et al.  Neural networks for control , 1990 .

[7]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[8]  D. Sprevak,et al.  An Introduction to Unconstrained Optimisation , 1990 .

[9]  Ka-Yiu San,et al.  Process identification using neural networks , 1992 .

[10]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[11]  Peter J. Gawthrop,et al.  Neural networks for control systems - A survey , 1992, Autom..

[12]  Chris J. Harris,et al.  Associative memory neural networks: Adaptive modelling theory, software implementations and graphical user interface , 1994 .

[13]  Daniel Sbarbaro,et al.  Neural Networks for Nonlinear Internal Model Control , 1991 .

[14]  Patrick C. Parks,et al.  A comparison of five algorithms for the training of CMAC memories for learning control systems , 1992, Autom..

[15]  T. Johansen,et al.  Constructing NARMAX models using ARMAX models , 1993 .

[16]  Dale E. Seborg,et al.  Nonlinear internal model control strategy for neural network models , 1992 .

[17]  M. Morari,et al.  Internal model control. VI: Extension to nonlinear systems , 1986 .

[18]  Björn Wittenmark,et al.  On Self Tuning Regulators , 1973 .

[19]  Carlos E. Garcia,et al.  Internal model control. A unifying review and some new results , 1982 .

[20]  Tor Arne Johansen,et al.  Identification of non-linear system structure and parameters using regime decomposition , 1995, Autom..