The family of ubiquitin‐conjugating enzymes (E2s): deciding between life and death of proteins

The family of ubiquitin‐conjugating (E2) enzymes is characterized by the presence of a highly conserved ubiquitin‐conjugating (UBC) domain. These domains accommodate the ATP‐activated ubiquitin (Ub) or ubiquitin‐like (UBL) protein via a covalently linked thioester onto its active‐site residue. E2 enzymes act via selective protein‐protein interactions with the E1 αnd E3 enzymes and connect activation to covalent modification. By doing so, E2s differentiate effects on downstream substrates, either with a single Ub/UBL molecule or as a chain. While E3s are involved in substrate selection, E2s are the main determinants for selection of the lysine to construct ubiquitin chains, which thereby directly control the cellular fate of the substrate. In humans, 35 active E2 enzymes have been identified so far, while other eukaryotic genomes harbor 16 to 35 E2 family members. Some E2s possess Nand/or C‐terminal extensions that mediate E2‐specific processes. During the past two decades, strong support has led to the control of E2 enzymes in decisions concerning the life or death of a protein. Here, we summarize current knowledge and recent developments on E2 enzymes with respect to structural characteristics and functions. From this we propose a shelllike model to rationalize the selectivity of these key enzymes in directing Ub/UBL‐conjugation pathways.— Van Wijk, S. J. L., Timmers, H. T. M. The family of ubiquitin‐conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. 24, 981–993 (2010). www.fasebj.org

[1]  S. Jentsch,et al.  Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. , 2004, Molecular cell.

[2]  Sebastian A. Wagner,et al.  E3-independent monoubiquitination of ubiquitin-binding proteins. , 2007, Molecular cell.

[3]  O. Staub Ubiquitylation and Isgylation: Overlapping Enzymatic Cascades Do the Job , 2004, Science's STKE.

[4]  J. Holton,et al.  Basis for a ubiquitin-like protein thioester switch toggling E1–E2 affinity , 2007, Nature.

[5]  Ping Wang,et al.  Structure of a c-Cbl–UbcH7 Complex RING Domain Function in Ubiquitin-Protein Ligases , 2000, Cell.

[6]  C. Pickart,et al.  Structure and function of ubiquitin conjugating enzyme E2-25K: the tail is a core-dependent activity element. , 1997, Biochemistry.

[7]  R. Roos,et al.  Ubiquitin-conjugating enzyme E2-25K increases aggregate formation and cell death in polyglutamine diseases , 2007, Molecular and Cellular Neuroscience.

[8]  M. Sullivan,et al.  Cloning of a 16-kDa ubiquitin carrier protein from wheat and Arabidopsis thaliana. Identification of functional domains by in vitro mutagenesis. , 1991, The Journal of biological chemistry.

[9]  Mike Tyers,et al.  F-Box Proteins Are Receptors that Recruit Phosphorylated Substrates to the SCF Ubiquitin-Ligase Complex , 1997, Cell.

[10]  T. Mak,et al.  p53 accumulation, defective cell proliferation, and early embryonic lethality in mice lacking tsg101. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Gygi,et al.  An FTS/Hook/p107(FHIP) complex interacts with and promotes endosomal clustering by the homotypic vacuolar protein sorting complex. , 2008, Molecular biology of the cell.

[12]  Holly McDonough,et al.  CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70 , 2006, Nature.

[13]  Lilia Alberghina,et al.  The CK2 phosphorylation of catalytic domain of Cdc34 modulates its activity at the G1 to S transition in Saccharomyces cerevisiae , 2008, Cell cycle.

[14]  P. Brzovic,et al.  E2–BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages , 2007, Nature Structural &Molecular Biology.

[15]  Daniel J Klionsky,et al.  The Atg8 and Atg12 ubiquitin‐like conjugation systems in macroautophagy , 2008, EMBO reports.

[16]  David W. Miller,et al.  A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8 , 2004, Nature Structural &Molecular Biology.

[17]  H. Yokosawa,et al.  Link between the ubiquitin conjugation system and the ISG15 conjugation system: ISG15 conjugation to the UbcH6 ubiquitin E2 enzyme. , 2005, Journal of biochemistry.

[18]  Ivan Dikic,et al.  Atypical ubiquitin chains: new molecular signals , 2008, EMBO reports.

[19]  C. Dominguez,et al.  An altered-specificity ubiquitin-conjugating enzyme/ubiquitin-protein ligase pair. , 2004, Journal of Molecular Biology.

[20]  L. Aravind,et al.  Anatomy of the E2 ligase fold: implications for enzymology and evolution of ubiquitin/Ub-like protein conjugation. , 2008, Journal of structural biology.

[21]  H. Ploegh,et al.  Mechanisms, biology and inhibitors of deubiquitinating enzymes. , 2007, Nature chemical biology.

[22]  Takeshi Noda,et al.  A Protein Conjugation System in Yeast with Homology to Biosynthetic Enzyme Reaction of Prokaryotes* , 2000, The Journal of Biological Chemistry.

[23]  H. Yokosawa,et al.  ISG15 modification of Ubc13 suppresses its ubiquitin-conjugating activity. , 2005, Biochemical and biophysical research communications.

[24]  P. Bork,et al.  Identification and characterization of UEV3, a human cDNA with similarities to inactive E2 ubiquitin-conjugating enzymes. , 2002, Biochimica et Biophysica Acta.

[25]  S. Michnick,et al.  Regulation of Apoptosis by the Ft1 Protein, a New Modulator of Protein Kinase B/Akt , 2004, Molecular and Cellular Biology.

[26]  S. Jentsch,et al.  The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Cynthia Wolberger,et al.  Mms2–Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation , 2006, Nature Structural &Molecular Biology.

[28]  B. Schulman,et al.  Identification of conjugation specificity determinants unmasks vestigial preference for ubiquitin within the NEDD8 E2 , 2008, Nature Structural &Molecular Biology.

[29]  C. Pickart,et al.  Molecular Insights into Polyubiquitin Chain Assembly Crystal Structure of the Mms2/Ubc13 Heterodimer , 2001, Cell.

[30]  M. Goebl,et al.  The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. , 1988, Science.

[31]  T. Rossman,et al.  fau and its ubiquitin-like domain (FUBI) transforms human osteogenic sarcoma (HOS) cells to anchorage-independence , 2003, Oncogene.

[32]  C. Pickart,et al.  Mechanism of ubiquitin conjugating enzyme E2-230K: catalysis involving a thiol relay? , 1996, Biochemistry.

[33]  Rebecca C Wade,et al.  Determinants of functionality in the ubiquitin conjugating enzyme family. , 2004, Structure.

[34]  C. Pickart,et al.  In Vitro Assembly and Recognition of Lys-63 Polyubiquitin Chains* , 2001, The Journal of Biological Chemistry.

[35]  H. Suzuki,et al.  NEDD8 recruits E2‐ubiquitin to SCF E3 ligase , 2001, The EMBO journal.

[36]  C. Pickart,et al.  A novel, arsenite-sensitive E2 of the ubiquitin pathway: purification and properties. , 1989, Biochemistry.

[37]  M. Roussel,et al.  E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. , 2009, Molecular cell.

[38]  D. Fushman,et al.  Polyubiquitin chains: polymeric protein signals. , 2004, Current opinion in chemical biology.

[39]  Eugene V. Koonin,et al.  TSG101 may be the prototype of a class of dominant negative ubiquitin regulators , 1997, Nature Genetics.

[40]  C. Lima,et al.  A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 Ubc9 , 2009, Nature Structural &Molecular Biology.

[41]  C. Lima,et al.  Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1 , 2005, The EMBO journal.

[42]  M. Vidal,et al.  Analysis of the human E2 ubiquitin conjugating enzyme protein interaction network. , 2009, Genome research.

[43]  F. Melchior,et al.  SUMO--nonclassical ubiquitin. , 2000, Annual review of cell and developmental biology.

[44]  T. Noda,et al.  Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function , 2004, Nature Cell Biology.

[45]  Michael J. Ellison,et al.  Crystal structure of the human ubiquitin conjugating enzyme complex, hMms2–hUbc13 , 2001, Nature Structural Biology.

[46]  A. Mawson,et al.  Cdc34 C-terminal tail phosphorylation regulates Skp1/cullin/F-box (SCF)-mediated ubiquitination and cell cycle progression. , 2007, The Biochemical journal.

[47]  John Rush,et al.  Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation , 2009, Cell.

[48]  J. Wade Harper,et al.  Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways , 2009, Nature Reviews Molecular Cell Biology.

[49]  Tommer Ravid,et al.  Diversity of degradation signals in the ubiquitin–proteasome system , 2008, Nature Reviews Molecular Cell Biology.

[50]  Y. Saeki,et al.  Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3 ligase activity , 2007, Nature Structural &Molecular Biology.

[51]  W. Xiao,et al.  Structural Basis for Non-Covalent Interaction Between Ubiquitin and the Ubiquitin Conjugating Enzyme Variant Human MMS2 , 2006, Journal of biomolecular NMR.

[52]  Donghai Lin,et al.  Identification of a Substrate Recognition Site on Ubc9* , 2002, The Journal of Biological Chemistry.

[53]  A. Weissman,et al.  Ubiquitin charging of human class III ubiquitin-conjugating enzymes triggers their nuclear import , 2004, The Journal of cell biology.

[54]  J. Huibregtse,et al.  The Basis for Selective E1-E2 Interactions in the ISG15 Conjugation System* , 2008, Journal of Biological Chemistry.

[55]  Brian Kuhlman,et al.  Sequence determinants of E2-E6AP binding affinity and specificity. , 2007, Journal of molecular biology.

[56]  D. Cyr,et al.  CHIP Is a U-box-dependent E3 Ubiquitin Ligase , 2001, The Journal of Biological Chemistry.

[57]  D. Rotin,et al.  Physiological functions of the HECT family of ubiquitin ligases , 2009, Nature Reviews Molecular Cell Biology.

[58]  Rolf Boelens,et al.  Structural model of the UbcH5B/CNOT4 complex revealed by combining NMR, mutagenesis, and docking approaches. , 2004, Structure.

[59]  P. Robinson,et al.  E3 ubiquitin ligases. , 2005, Essays in biochemistry.

[60]  Honglin Zhou,et al.  Distinct regulation of Ubc13 functions by the two ubiquitin-conjugating enzyme variants Mms2 and Uev1A , 2005, The Journal of cell biology.

[61]  Soichi Wakatsuki,et al.  Ubiquitin-binding domains — from structures to functions , 2009, Nature Reviews Molecular Cell Biology.

[62]  S. Gygi,et al.  Ubiquitin-Like Protein Involved in the Proteasome Pathway of Mycobacterium tuberculosis , 2008, Science.

[63]  Brian Kuhlman,et al.  E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer , 2005, Nature Structural &Molecular Biology.

[64]  J. Nix,et al.  Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes , 2008, BMC Structural Biology.

[65]  C. Pickart,et al.  Noncanonical MMS2-Encoded Ubiquitin-Conjugating Enzyme Functions in Assembly of Novel Polyubiquitin Chains for DNA Repair , 1999, Cell.

[66]  P. Cohen,et al.  Chaperoned ubiquitylation--crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. , 2005, Molecular cell.

[67]  G. Barton,et al.  System-Wide Changes to SUMO Modifications in Response to Heat Shock , 2009, Science Signaling.

[68]  Dong-er Zhang,et al.  ISG15 modification of ubiquitin E2 Ubc13 disrupts its ability to form thioester bond with ubiquitin. , 2005, Biochemical and biophysical research communications.

[69]  C. Ptak,et al.  Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. , 2001, Structure.

[70]  B. Dye,et al.  Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. , 2007, Annual review of biophysics and biomolecular structure.

[71]  M. Hochstrasser,et al.  Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue , 2007, Nature Cell Biology.

[72]  S. Jentsch,et al.  Ubiquitin‐conjugating enzymes UBC4 and UBC5 mediate selective degradation of short‐lived and abnormal proteins. , 1990, The EMBO journal.

[73]  Wei Li,et al.  A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate , 2007, Nature.

[74]  M. Hochstrasser,et al.  Origin and function of ubiquitin-like proteins , 2009, Nature.

[75]  P. Howley,et al.  Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. , 1999, Science.

[76]  A. Weissman,et al.  The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[77]  T. Biederer,et al.  Role of Cue1p in ubiquitination and degradation at the ER surface. , 1997, Science.

[78]  D. Hoyt,et al.  A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. , 2006, Molecular cell.

[79]  Tharan Srikumar,et al.  Global map of SUMO function revealed by protein-protein interaction and genetic networks. , 2009, Molecular cell.

[80]  D. Gonda,et al.  Novel CDC34 (UBC3) ubiquitin-conjugating enzyme mutants obtained by charge-to-alanine scanning mutagenesis , 1995, Molecular and cellular biology.

[81]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[82]  W. Xiao,et al.  Noncovalent Interaction between Ubiquitin and the Human DNA Repair Protein Mms2 Is Required for Ubc13-mediated Polyubiquitination* , 2001, The Journal of Biological Chemistry.

[83]  D. Cyr,et al.  The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation , 2000, Nature Cell Biology.

[84]  B. Pan,et al.  The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. , 2008, Molecular cell.

[85]  U. Rüther,et al.  Ftl, a novel gene related to ubiquitin-conjugating enzymes, is deleted in the Fused toes mouse mutation , 1997, Mammalian Genome.

[86]  R. Krug,et al.  The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[87]  S. Gygi,et al.  S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains , 2009, The EMBO journal.

[88]  Hermann Schindelin,et al.  Structural Insights into E1-Catalyzed Ubiquitin Activation and Transfer to Conjugating Enzymes , 2008, Cell.

[89]  M. Tatham,et al.  RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation , 2008, Nature Cell Biology.

[90]  Sjoerd J de Vries,et al.  A comprehensive framework of E2–RING E3 interactions of the human ubiquitin–proteasome system , 2009, Molecular systems biology.

[91]  J. Holton,et al.  Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. , 2005, Molecular cell.

[92]  C. Michelle,et al.  What Was the Set of Ubiquitin and Ubiquitin-Like Conjugating Enzymes in the Eukaryote Common Ancestor? , 2009, Journal of Molecular Evolution.

[93]  Steven P Gygi,et al.  Certain Pairs of Ubiquitin-conjugating Enzymes (E2s) and Ubiquitin-Protein Ligases (E3s) Synthesize Nondegradable Forked Ubiquitin Chains Containing All Possible Isopeptide Linkages* , 2007, Journal of Biological Chemistry.

[94]  David W. Miller,et al.  The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. , 2003, Molecular cell.

[95]  Weidong Hu,et al.  The intrinsic affinity between E2 and the Cys domain of E1 in ubiquitin-like modifications. , 2007, Molecular cell.

[96]  Christian Pohl,et al.  Final Stages of Cytokinesis and Midbody Ring Formation Are Controlled by BRUCE , 2008, Cell.

[97]  M. Hipp,et al.  FAT10, a Ubiquitin-Independent Signal for Proteasomal Degradation , 2005, Molecular and Cellular Biology.

[98]  M. Sutter,et al.  Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes , 2009, Nature Structural &Molecular Biology.

[99]  Yasushi Saeki,et al.  Lysine 63‐linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome , 2009, The EMBO journal.

[100]  R. Krug,et al.  The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-α/β-induced ubiquitin-like protein , 2004 .

[101]  Roman Körner,et al.  SUMO modification of the ubiquitin-conjugating enzyme E2-25K , 2005, Nature Structural &Molecular Biology.

[102]  L. Aravind,et al.  Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination , 2008, Biology Direct.