Ultrasensitive Optomechanical Magnetometry

A cavity optomechanical magneto-meter operating in the 100 pT range is reported. The device operates at earth field, achieves tens of megahertz bandwidth with 60 μm spatial resolution and microwatt optical-power requirements. These unique capabilities may have a broad range of applications including cryogen-free and microfluidic magnetic resonance imaging (MRI), and investigation of spin-physics in condensed matter systems.

[1]  General limit to nondestructive optical detection of atoms (6 pages) , 2004, quant-ph/0409160.

[2]  D Budker,et al.  Zero-field remote detection of NMR with a microfabricated atomic magnetometer , 2008, Proceedings of the National Academy of Sciences.

[3]  Xiang Yang Jiang The Analysis of General Entropy in Harmonious Management for Nature Tourism and Eco-Environmental Protection , 2012 .

[4]  Nan Zhao,et al.  Sensing single remote nuclear spins. , 2012, Nature nanotechnology.

[5]  Dmitry Budker,et al.  Detection of the Meissner effect with a diamond magnetometer , 2009, 0911.2533.

[6]  R. B. Givens,et al.  A microelectromechanical‐based magnetostrictive magnetometer , 1996 .

[7]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[8]  M. Lukin,et al.  Efficient photon detection from color centers in a diamond optical waveguide , 2012, 1201.0674.

[9]  D. Hoffman,et al.  Magnetoencephalography with an atomic magnetometer , 2006 .

[10]  W. Ketterle,et al.  Spin domains in ground-state Bose–Einstein condensates , 1998, Nature.

[11]  G. Engdahl Handbook of Giant Magnetostrictive Materials , 1999 .

[12]  M. Smit,et al.  A fast low-power optical memory based on coupled micro-ring lasers , 2004, Nature.

[13]  J Wrachtrup,et al.  Magnetic spin imaging under ambient conditions with sub-cellular resolution. , 2013, Nature communications.

[14]  A. Chwala,et al.  SQUID technology for geophysical exploration , 2005 .

[15]  Essa Yacoub,et al.  Spatial organization of frequency preference and selectivity in the human inferior colliculus , 2012, Nature Communications.

[16]  Joachim Knittel,et al.  Cooling and control of a cavity optoelectromechanical system. , 2009, Physical review letters.

[17]  S. Deléglise,et al.  Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode , 2011, Nature.

[18]  Robert Wyllie,et al.  Optical magnetometer array for fetal magnetocardiography. , 2012, Optics letters.

[19]  A. C. Maloof,et al.  Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer , 2009, 0910.2206.

[20]  S. Arnold,et al.  Single virus detection from the reactive shift of a whispering-gallery mode , 2008, Proceedings of the National Academy of Sciences.

[21]  Q. Lin,et al.  A high-resolution microchip optomechanical accelerometer , 2012, Nature Photonics.

[22]  J. Kitching,et al.  A low-power, high-sensitivity micromachined optical magnetometer , 2012 .

[23]  T. Kippenberg,et al.  A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. , 2011, Nature nanotechnology.

[24]  S. Dong,et al.  Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature , 2006 .

[25]  M D Barrett,et al.  Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein condensates. , 2003, Physical review letters.

[26]  Paulo P. Freitas,et al.  Low frequency picotesla field detection using hybrid MgO based tunnel sensors , 2007 .

[27]  M. Rinaldi,et al.  Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection , 2013, Scientific Reports.

[28]  Wei Wang,et al.  Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening , 2013, Advanced materials.

[29]  Andrew R. Mayer,et al.  Modelling the magnetic signature of neuronal tissue , 2007, NeuroImage.

[30]  M. Romalis,et al.  Atomic magnetometers for materials characterization , 2011 .

[31]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[32]  M. Radparvar,et al.  Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples , 2003 .

[33]  J Knittel,et al.  Cavity optomechanical magnetometer. , 2012, Physical review letters.

[34]  S. Arnold,et al.  Shift of whispering-gallery modes in microspheres by protein adsorption. , 2003, Optics letters.

[35]  Frank Bucholtz,et al.  Elimination of residual signals and reduction of noise in a low‐frequency magnetic fiber sensor , 1988 .

[36]  Tobias J. Kippenberg,et al.  Optomechanically Induced Transparency , 2010, Science.

[37]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[38]  M. Lukin,et al.  Quantum control of proximal spins using nanoscale magnetic resonance imaging , 2011, 1103.0546.

[39]  A. Greilich,et al.  Spin noise of electrons and holes in self-assembled quantum dots. , 2009, Physical review letters.