Capacitivo

We present Capacitivo, a contact-based object recognition technique developed for interactive fabrics, using capacitive sensing. Unlike prior work that has focused on metallic objects, our technique recognizes non-metallic objects such as food, different types of fruits, liquids, and other types of objects that are often found around a home or in a workplace. To demonstrate our technique, we created a prototype composed of a 12 x 12 grid of electrodes, made from conductive fabric attached to a textile substrate. We designed the size and separation between the electrodes to maximize the sensing area and sensitivity. We then used a 10-person study to evaluate the performance of our sensing technique using 20 different objects, which yielded a 94.5% accuracy rate. We conclude this work by presenting several different application scenarios to demonstrate unique interactions that are enabled by our technique on fabrics.

[1]  Jun Rekimoto,et al.  Mirage: exploring interaction modalities using off-body static electric field sensing , 2013, UIST.

[2]  Michael Haller,et al.  RESi: A Highly Flexible, Pressure-Sensitive, Imperceptible Textile Interface Based on Resistive Yarns , 2018, UIST.

[3]  Gamini Dissanayake,et al.  Capacitive sensor for object ranging and material type identification , 2008 .

[4]  Arjan Kuijper,et al.  Capacitive near-field communication for ubiquitous interaction and perception , 2014, UbiComp.

[5]  Alex Olwal,et al.  SmartSleeve: Real-time Sensing of Surface and Deformation Gestures on Flexible, Interactive Textiles, using a Hybrid Gesture Detection Pipeline , 2017, UIST.

[6]  Matti Pietikäinen,et al.  Deep Learning for Generic Object Detection: A Survey , 2018, International Journal of Computer Vision.

[7]  Eric Horvitz,et al.  Foreground and background interaction with sensor-enhanced mobile devices , 2005, TCHI.

[8]  Ju Wang,et al.  TagScan: Simultaneous Target Imaging and Material Identification with Commodity RFID Devices , 2017, MobiCom.

[9]  S. Krohns,et al.  Dielectric Properties of 3D Printed Polylactic Acid , 2017 .

[10]  Li-Wei Chan,et al.  TUIC: enabling tangible interaction on capacitive multi-touch displays , 2011, CHI.

[11]  Majid Sarrafzadeh,et al.  Computing with uncertainty in a smart textile surface for object recognition , 2010, 2010 IEEE Conference on Multisensor Fusion and Integration.

[12]  Michael Haller,et al.  Embroidered Resistive Pressure Sensors: A Novel Approach for Textile Interfaces , 2020, CHI.

[13]  Darren Leigh,et al.  High rate, low-latency multi-touch sensing with simultaneous orthogonal multiplexing , 2014, UIST.

[14]  Gierad Laput,et al.  Ubicoustics: Plug-and-Play Acoustic Activity Recognition , 2018, UIST.

[15]  Manuchehr Soleimani,et al.  Planar array 3D electrical capacitive tomography , 2013 .

[16]  Joseph A. Paradiso,et al.  Applying electric field sensing to human-computer interfaces , 1995, CHI '95.

[17]  Olga Sorkine-Hornung,et al.  Deformation Capture via Soft and Stretchable Sensor Arrays , 2018, ACM Trans. Graph..

[18]  Gierad Laput,et al.  EM-Sense: Touch Recognition of Uninstrumented, Electrical and Electromechanical Objects , 2015, UIST.

[19]  Teddy Seyed,et al.  Tessutivo: Contextual Interactions on Interactive Fabrics with Inductive Sensing , 2019, UIST.

[20]  Yuanchun Shi,et al.  FlexTouch: Enabling Large-Scale Interaction Sensing Beyond Touchscreens Using Flexible and Conductive Materials , 2019, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[21]  Arjan Kuijper,et al.  Ambient Gesture-Recognizing Surfaces with Visual Feedback , 2014, HCI.

[22]  Yang Zhang,et al.  Wall++: Room-Scale Interactive and Context-Aware Sensing , 2018, CHI.

[23]  Stefan Schneegaß,et al.  GestureSleeve: using touch sensitive fabrics for gestural input on the forearm for controlling smartwatches , 2016, SEMWEB.

[24]  Darren Leigh,et al.  GhostID: Enabling Non-Persistent User Differentiation in Frequency-Division Capacitive Multi-Touch Sensors , 2017, CHI.

[25]  K. Lian,et al.  Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics , 2013 .

[26]  Ivan Poupyrev,et al.  Capacitive fingerprinting: exploring user differentiation by sensing electrical properties of the human body , 2012, UIST '12.

[27]  Teddy Seyed,et al.  Fabriccio: Touchless Gestural Input on Interactive Fabrics , 2020, CHI.

[28]  Alex Olwal,et al.  StretchEBand: Enabling Fabric-based Interactions through Rapid Fabrication of Textile Stretch Sensors , 2017, CHI.

[29]  Romit Roy Choudhury,et al.  LiquID: A Wireless Liquid IDentifier , 2018, MobiSys.

[30]  Lihui Peng,et al.  Image reconstruction algorithms for electrical capacitance tomography , 2003 .

[31]  Manuchehr Soleimani,et al.  Resolution Analysis Using Fully 3D Electrical Capacitive Tomography , 2015 .

[32]  Ming-Chun Huang,et al.  eCushion: A Textile Pressure Sensor Array Design and Calibration for Sitting Posture Analysis , 2013, IEEE Sensors Journal.

[33]  Darren Leigh,et al.  DiamondTouch: a multi-user touch technology , 2001, UIST '01.

[34]  Gierad Laput,et al.  ViBand: High-Fidelity Bio-Acoustic Sensing Using Commodity Smartwatch Accelerometers , 2016, UIST.