Transition in conduction mechanism in GeSi nanostructures

GeSi-based nanostructures show unique properties which make them suitable for integrated circuit technology. The strong interest is to enhance their electronic properties in order to improve the device performance. In order to obtain fundamental knowledge on the electrical transport taking place in GeSi nanostructures we have investigated the effects of different microstructures on the electrical behavior of GeSi nanostructured films, by modifying the annealing conditions. We manufactured GeSi nanostructured films with equiatomic composition and different structures by co-sputtering followed by adequate annealing under different temperatures. For determining the electrical behavior we performed and modeled current-temperature I - T characteristics taking into account the films structures. We found that the electrical behavior changes with the film structure by evidencing a transition in conduction mechanism. In films that are almost crystallized, being formed of small GeSi nanocrystals separated by thin amorphous regions, the I - T dependence at low temperature is due to thermally activated tunneling of carriers between neighboring nanocrystals. In contrast, in the completely crystallized films with big GeSi nanocrystals and crystallized borders between them, the electrical behavior is a typical polycrystalline one. Our findings help to clarify the conduction mechanisms taking place in GeSi nanostructures and to provide a route to electronic devices with high performance based on these materials.