Variational data generative model for intrusion detection

[1]  Zhiting Hu,et al.  Improved Variational Autoencoders for Text Modeling using Dilated Convolutions , 2017, ICML.

[2]  Ben Poole,et al.  Categorical Reparameterization with Gumbel-Softmax , 2016, ICLR.

[3]  Phil Blunsom,et al.  Neural Variational Inference for Text Processing , 2015, ICML.

[4]  Anamika Yadav,et al.  Performance analysis of NSL-KDD dataset using ANN , 2015, 2015 International Conference on Signal Processing and Communication Engineering Systems.

[5]  Alex Graves,et al.  DRAW: A Recurrent Neural Network For Image Generation , 2015, ICML.

[6]  Probal Chaudhuri,et al.  Comparison of multivariate distributions using quantile-quantile plots and related tests , 2014, 1407.1212.

[7]  Jugal K. Kalita,et al.  Network Anomaly Detection: Methods, Systems and Tools , 2014, IEEE Communications Surveys & Tutorials.

[8]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[9]  Mahmod S. Mahmod,et al.  A COMPARISON STUDY FOR INTRUSION DATABASE (KDD99, NSL-KDD) BASED ON SELF ORGANIZATION MAP (SOM) ARTIFICIAL NEURAL NETWORK , 2013 .

[10]  Francisco Herrera,et al.  A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[11]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[12]  Vern Paxson,et al.  Outside the Closed World: On Using Machine Learning for Network Intrusion Detection , 2010, 2010 IEEE Symposium on Security and Privacy.

[13]  Hien M. Nguyen,et al.  Borderline over-sampling for imbalanced data classification , 2009, Int. J. Knowl. Eng. Soft Data Paradigms.

[14]  Ali A. Ghorbani,et al.  A detailed analysis of the KDD CUP 99 data set , 2009, 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications.

[15]  Haibo He,et al.  ADASYN: Adaptive synthetic sampling approach for imbalanced learning , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[16]  David A. Cieslak,et al.  Combating imbalance in network intrusion datasets , 2006, 2006 IEEE International Conference on Granular Computing.

[17]  Hui Han,et al.  Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning , 2005, ICIC.

[18]  John W. Fisher,et al.  Estimating dependency and significance for high-dimensional data , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[19]  Gary M. Weiss Mining with rarity: a unifying framework , 2004, SKDD.

[20]  Gustavo E. A. P. A. Batista,et al.  A study of the behavior of several methods for balancing machine learning training data , 2004, SKDD.

[21]  Samy Bengio,et al.  Taking on the curse of dimensionality in joint distributions using neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[22]  R. Zamar,et al.  A multivariate Kolmogorov-Smirnov test of goodness of fit , 1997 .

[23]  Geoffrey E. Hinton,et al.  Autoencoders, Minimum Description Length and Helmholtz Free Energy , 1993, NIPS.

[24]  Murray D. Burke,et al.  On the multivariate two-sample problem using strong approximations of the EDF , 1977 .

[25]  Seetha Hari,et al.  Learning From Imbalanced Data , 2019, Advances in Computer and Electrical Engineering.

[26]  Sungzoon Cho,et al.  Variational Autoencoder based Anomaly Detection using Reconstruction Probability , 2015 .

[27]  Edwin de Jonge,et al.  Visualizing and Inspecting Large Datasets with Tableplots , 2013, Journal of Data Science.

[28]  Zhi-Hua Zhou,et al.  Exploratory Undersampling for Class-Imbalance Learning , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[29]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..