NemoProfile as an efficient approach to network motif analysis with instance collection

BackgroundA network motif is defined as a statistically significant and recurring subgraph pattern within a network. Most existing instance collection methods are not feasible due to high memory usage issues and provision of limited network motif information. They require a two-step process that requires network motif identification prior to instance collection. Due to the impracticality in obtaining motif instances, the significance of their contribution to problem solving is debated within the field of biology.ResultsThis paper presents NemoProfile, an efficient new network motif data model. NemoProfile simplifies instance collection by resolving memory overhead issues and is seamlessly generated, thus eliminating the need for costly two-step processing. Additionally, a case study was conducted to demonstrate the application of network motifs to existing problems in the field of biology.ConclusionNemoProfile comprises network motifs and their instances, thereby facilitating network motifs usage in real biological problems.

[1]  Andreas Wagner,et al.  Convergent evolution of gene circuits , 2003, Nature Genetics.

[2]  Sebastian Wernicke,et al.  FANMOD: a tool for fast network motif detection , 2006, Bioinform..

[3]  Rok Sosic,et al.  SNAP , 2016, ACM Trans. Intell. Syst. Technol..

[4]  Ming-Jing Hwang,et al.  An interaction-motif-based scoring function for protein-ligand docking , 2010, BMC Bioinformatics.

[5]  Falk Schreiber,et al.  MAVisto: a tool for the exploration of network motifs , 2005, Bioinform..

[6]  Albert-László Barabási,et al.  Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network , 2004, BMC Bioinformatics.

[7]  Chun-Hsi Huang,et al.  Biological network motif detection: principles and practice , 2012, Briefings Bioinform..

[8]  Ren Zhang,et al.  DEG: a database of essential genes. , 2004, Nucleic acids research.

[9]  Z N Oltvai,et al.  Evolutionary conservation of motif constituents in the yeast protein interaction network , 2003, Nature Genetics.

[10]  Sebastian Wernicke,et al.  Efficient Detection of Network Motifs , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[11]  Werner Callebaut,et al.  Scientific perspectivism: A philosopher of science's response to the challenge of big data biology. , 2012, Studies in history and philosophy of biological and biomedical sciences.

[12]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[13]  Ian H. Witten,et al.  Data mining in bioinformatics using Weka , 2004, Bioinform..

[14]  Robert Clarke,et al.  Network motif-based identification of breast cancer susceptibility genes , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[15]  Marcus Kaiser,et al.  Strategies for Network Motifs Discovery , 2009, 2009 Fifth IEEE International Conference on e-Science.

[16]  Ioannis Xenarios,et al.  DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions , 2002, Nucleic Acids Res..

[17]  Igor Jurisica,et al.  Modeling interactome: scale-free or geometric? , 2004, Bioinform..

[18]  Mong-Li Lee,et al.  NeMoFinder: dissecting genome-wide protein-protein interactions with meso-scale network motifs , 2006, KDD '06.

[19]  Wei-Po Lee,et al.  Differential evolutionary conservation of motif modes in the yeast protein interaction network , 2006, BMC Genomics.

[20]  Karl Rihaczek,et al.  1. WHAT IS DATA MINING? , 2019, Data Mining for the Social Sciences.

[21]  Wooyoung Kim,et al.  Network Motif Detection: Algorithms, Parallel and Cloud Computing,and Related Tools , 2013 .

[22]  Uri Alon,et al.  Kashtan, N., Itzkovitz, S., Milo, R. & Alon, U. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20, 1746-1758 , 2004 .

[23]  Mong-Li Lee,et al.  Labeling network motifs in protein interactomes for protein function prediction , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[24]  Falk Schreiber,et al.  Analysis of Biological Networks , 2008 .

[25]  Yi Pan,et al.  Essential Protein Discovery Based on Network Motif and Gene Ontology , 2011, 2011 IEEE International Conference on Bioinformatics and Biomedicine.

[26]  Joshua A. Grochow,et al.  Network Motif Discovery Using Subgraph Enumeration and Symmetry-Breaking , 2007, RECOMB.

[27]  Sahar Asadi,et al.  Kavosh: a new algorithm for finding network motifs , 2009, BMC Bioinformatics.

[28]  F. Schreiber,et al.  MODA: an efficient algorithm for network motif discovery in biological networks. , 2009, Genes & genetic systems.

[29]  Frank Harary,et al.  Graphical enumeration , 1973 .

[30]  Uri Alon,et al.  Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs , 2004, Bioinform..

[31]  Wooyoung Kim,et al.  Prediction of essential proteins using topological properties in GO-pruned PPI network based on machine learning methods , 2012 .

[32]  Réka Albert,et al.  Conserved network motifs allow protein-protein interaction prediction , 2004, Bioinform..

[33]  S. L. Wong,et al.  Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network , 2005, Journal of biology.